SIMULATION OF RANDOM EXPERIMENTS

Basic commands for generating random numbers in R :
runif (1) - generates a random number between 0 and 1
runit (3) - generates 3 independent random numbers between 0 add 1

1. Simulate 10,000 flips of two unfair coins, one of which lands heads with probability 0.4 , and the other lands heads with probability 0.6 . Count the number of times that both land heads.
```
count <- 0 # count starts at zero
for(i in 1:10000){ # loop 10000 times
    # generate random numbers between 0 and 1
    r <- runif(1)
    s <- runif(1)
    # if both coins are heads, then increment counter
    if(r<0.4 && s < 0.6){
        count <- count + 1
    }
}
print(count) # this is the number of times both coins land heads
```

\longrightarrow count should be about 2400
\# more concise code to solve the same problem as above
r <- runif(10000) \# 10000 flips of the first coin
s <- runif(10000) \# 10000 flips of the second coin
count $=(r<0.4) \&(s<0.6)$
\#print(count)
print(sum(count))

SAMPLING IN R
number of random
elements that you want
Basic command: sample (n, size, replace)
number or set to sample from

EXAMPLES: $\operatorname{Sample}(1: 6,5$, replace $=$ TRUE $)$
simulates 5 rolls of a standard, fair die
sample $(1: 100,20$, FALSE $)$
choose 20 numbers from $\{1,2, \ldots, 100\}$, without replacement
2. Use simulation to approximate the probability that at least two is appear in three rolls of standard, fair dice.

```
# simulate the probability that at least two 1s appears in
# three rolls of a standard, fair die
c <- 0
for(i in 1:10000){
    dice <- sample(1:6, 3, TRUE) # three die rolls
    ones <- sum(dice == 1) # number of ones in the rolls
    if(ones >= 2){
        c <- c + 1 # increment counter
        }
}
print(c/10000)
```

Analytic solution:

$$
\begin{aligned}
P(\text { at least two 1s) } & =P(\text { exactly two Is })+P(\text { exactly three 1s) } \\
& =\binom{3}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)+\left(\frac{1}{6}\right)^{3}=\frac{16}{216} \approx 0.074
\end{aligned}
$$

