HYPERGEOMETRIC DISTRIBUTION

If X is the number of "successes" in a random sample of size n drawn from a population of size N consisting of M "successes", then X has a hypergeometric distribution and

$$
P(X=x)=h(x ; n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} .
$$

$$
\begin{gathered}
\text { Last time: } \begin{array}{c}
0 \leq x \\
n-x \leq N-M \\
n-N+M \leq x
\end{array} \\
\downarrow
\end{gathered}
$$

$$
\begin{aligned}
& x \leq M \\
& x \leq n \\
& x \leq \min (M, n)
\end{aligned}
$$

$$
\max (0, n-N+M) \leq x
$$

Also: mean: $E(X)=n \cdot \frac{M}{N} \leftarrow$ like the mean $n p$ of a binomial $r v$

$$
\text { variance: } \operatorname{Var}(X)=\underbrace{n \cdot \frac{M}{N}\left(1-\frac{M}{N}\right)}_{\text {like n.p(1-p) }} \underbrace{\left(\frac{N-n}{N-1}\right)}_{\begin{array}{c}
\text { Correction term for sampling } \\
\text { without replacement }
\end{array}}
$$

1. Suppose that in a batch of 20 items, 2 are defective. If 5 of the items are sampled at random:
(a) What is the probability that none of the sampled items are defective?

$$
\begin{aligned}
& \text { Let } X \text { be hypergeometric iv } \\
& \text { with } n=5, M=2, N=20
\end{aligned} \quad P(X=0)=\frac{\binom{2}{0}\binom{18}{5}}{\binom{20}{5}} \approx 0.553 \quad R: \operatorname{dhyper}(0,2,18,5)
$$

(b) What is the probability that exactly 1 of the sampled items are defective?

$$
P(X=1)=\frac{\binom{2}{1}\binom{18}{4}}{\binom{20}{5}} \approx 0.395 \quad R: \operatorname{dhyper}(1,2,18,5)
$$

(c) What is the probability that exactly 3 of the sampled items are defective?

$$
P(X=3)=0=\frac{\text { zero }}{\rightarrow} \frac{\binom{2}{3}\binom{18}{2}}{\binom{20}{5}}
$$

(d) On average how many defective items will be found in a random sample of 5 items?

$$
E(X)=n \cdot \frac{M}{N}=5 \cdot \frac{2}{20}=0.5
$$

(e) What is the probability that the number of defective items sampled is within 2 standard deviations of the mean number?

$$
\begin{aligned}
& \operatorname{Var}(X)=n \frac{M}{N}\left(1-\frac{M}{N}\right)\left(\frac{N-n}{N-1}\right)=5 \cdot \frac{2}{20}\left(1-\frac{2}{20}\right)\left(\frac{15}{19}\right) \approx 0.355 \\
& \begin{aligned}
& \sigma_{X}=\sqrt{0.355} \approx 0.596 \quad R: \quad \operatorname{phyper}(1,2,18,5) \\
& \begin{aligned}
P\left(|X-\mu|<2 \sigma_{x}\right) & =P(-0.7 \leq X \leq 1.7)=P(X=0 \text { or } X=1)
\end{aligned} \\
&=0.553+0.395=0.948
\end{aligned}
\end{aligned}
$$

2. Let X be a hypergeometric random variable with parameters n, M, and N. Let Y be a binomial random variable with parameters n and $p=\frac{M}{N}$. Are $E(X)$ and $E(Y)$ always the same? How does $\operatorname{Var}(Y)$ compare to $\operatorname{Var}(X)$?

$$
\begin{aligned}
& E(X)=n \frac{M}{N}=n p=E(Y) \\
& \operatorname{Var}(X)=n \cdot \frac{M}{N}\left(1-\frac{M}{N}\right)\left(\frac{N-n}{N-1}\right)=n p(1-p)\left(\frac{N-n}{N-1}\right) \leq n p(1-p)=\operatorname{Var}(Y)
\end{aligned}
$$

HYPER GEOMETRIC AND BINOMIAL DISTRIBUTIONS

plot ($0: 10$, dhyper $(0: 10,10,2 \overline{0}, \overline{10})$, col="red") points $(0: 10$, dbinom $(0: 10,10,1 / 3)$, pch=4, col="blue")

plot (0:10, dhyper $(0: 10,100,200,10)$, col="red") points $(0: 10$, dbinom $(0: 10,10,1 / 3)$, pch=4, col="blue")

Why is it called "hypergeometric"?
The ratio of successive probabilities forms a hypergeometric
sequence.

$$
\frac{h(x+1 ; n, M, N)}{h(x ; n, M, N)}=\frac{(M-x)(n-x)}{(x+1)(N-M-n+x+1)}
$$

$$
B_{a} \text { rational function of } x
$$

3. Suppose you have a coin that, when flipped, shows heads with probability p.
(a) You flip the coin repeatedly until the first time the coin shows heads, and then you stop. Let X be the number of coin flips, until (and including) the first flip that shows heads. What is $P(X=3)$? What is $P(X=k)$?

$$
\begin{aligned}
& P(X=3)=(1-p)^{2} p \\
& P(X=k)=(1-p)^{k-1} p
\end{aligned}
$$

$$
\begin{aligned}
& T T H \\
& \underbrace{T T \cdots T}_{k-1} H
\end{aligned}
$$

(b) Let r be a positive integer. Now you flip the coin repeatedly until the coin shows heads r times, and then you stop. Let Y be the number of coin flips, until (and including) the r th flip that shows heads. What is $P(Y=k)$?

$$
P(Y=k)=\binom{k-1}{r-1} p^{r-1}(1-p)^{k-r} p
$$

