R functions for geometric and neg. binomial $r v$:

$$
\begin{aligned}
& P(X=x)=\operatorname{dgeom}(x-1, p) \leftarrow \text { pan for a geometric ry with prob. p } \\
& P(X \leq x)=\operatorname{pgeom}(\underbrace{x}_{\left.L_{\text {number of }}^{x-1}, p\right)} c d f
\end{aligned}
$$

$$
\begin{aligned}
& \text { dnbinom }(x-r, r, p) \leftarrow \text { pmf of } X \sim N B(r, p) \\
& \text { pnbinom }(\underbrace{(x-r}_{\text {number of failures before the }}, r, p) \leftarrow c d f \quad \text { "th } \text { success }
\end{aligned}
$$

A GENERATING FUNCTION is a power series whose coefficients encode a sequence of numbers.
example: $\quad 1 x+1 x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6}+\ldots=\frac{x}{1-x-x^{2}}$ ordinary generating function
Generating functions are use $\mathcal{X} 1$ for working of the Fibonacci sequence with sequences:

- Finding the terms of a sequence
- Finding recurrence relationships
- Studying asymptotics
- Solving combinatorial problems

To learn more, take Math 364 Combinatories in the spring!

An Exponential Generating Function encodes a sequence $a_{0}, a_{1}, a_{2}, \ldots$ by the power series

$$
\sum_{k=0}^{\infty} a_{k} \frac{x^{k}}{k!} \quad \operatorname{RECALL}: e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

The MOMENT GENERATING FUNCTION (mgf) of a random variable X is:

$$
M_{X}(t) \stackrel{\text { def }}{=} E\left(e^{t X}\right)=\sum_{x} \underbrace{e^{t x}}_{\text {values }} \underbrace{p(X=x)}_{\text {probabilities }}
$$

sum is over all possible values of X
This is an exponential generating function for the sequence of moments:

$$
M_{x}(t)=1+\underbrace{X^{\uparrow}}_{\text {moments of } X(X)}+\frac{E\left(X^{2}\right) \frac{t^{2}}{2}}{\underline{E\left(X^{3}\right)} \frac{t^{3}}{3!}+\cdots+\frac{E\left(X^{n}\right)}{n} \frac{t^{n}}{n!}+\cdots, ~}
$$

EXAMPLE: Let X be a Bernoulli rv with $p(1)=p$. Then:

$$
M_{x}(t)=E\left(e^{t x}\right)=e^{t \cdot 0}(1-p)+e^{t \cdot 1}(p)=1-p+p e^{t}
$$

$-t=\int^{\infty} t^{k}$

$$
M_{x}(t)=E\left(e^{t x}\right)=e^{t 0}(1-p)+e^{t-1}(p)=1-p+p e^{t}
$$

$$
e^{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}
$$

As a power series:

$$
\begin{aligned}
& M_{x}(t)=1-p+p \sum_{k=0}^{\infty} \frac{t^{k}}{k!}=1-p+p\left(1+t+\frac{t^{2}}{2}+\frac{t^{3}}{6}+\frac{t^{4}}{24}+\cdots\right) \\
& \begin{aligned}
E\left(x^{0}\right) & =E(1)=1 .
\end{aligned} \\
& E(x)=0(1-p)+2(\rho)=\rho
\end{aligned}
$$

WHy MGFs?

1. If we find $M_{x}(t)$, then we can easily obtain the moments of X, $E\left(X^{n}\right)$ for any n.
To obtain $E\left(X^{n}\right)$, differentiate $M_{x}(t)$ n times, and evaluate at $t=0$.
2. If the mots of X and Y are equal, then X and Y have the sane distribution.

WORKSHEET:

1. Let $X \sim \operatorname{Bin}(n, p)$. We will find $M_{X}(t)$.
(a) First, what is $E\left(e^{t X}\right)$? Write this as a sum.

$$
M_{x}(t)=E\left(e^{t x}\right)=\sum_{k=0}^{n} e^{t k} \underbrace{\binom{n}{k} p^{k}(1-p)^{n-k}}_{\text {binomial pm }}
$$

(b) Now use the binomial theorem $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$ to simplify your sum from part (a). You will then have a concise expression for $M_{X}(t)$.

$$
\begin{gathered}
M_{x}(t)=\sum_{k=0}^{\infty}\binom{n}{k}\left(p e^{t}\right)^{k}(1-p)^{n-k}=\left(p e^{t}+1-p\right)^{n} \\
a=p e^{t} \quad b=1-p
\end{gathered}
$$

(c) Use your result from part (b), together with the fact that $E\left(X^{r}\right)=M_{X}^{(r)}(0)$, to find $E(X)$ and $\operatorname{Var}(X)$. Do these agree with the formulas we learned previously?

$$
\begin{aligned}
& M_{X}(t)=\left(\rho e^{t}+1-p\right)^{n} \\
& M_{x}^{\prime}(t)=n\left(p e^{t}+1-p\right)^{n-1}\left(p e^{t}\right) \text {, so } M_{x}^{\prime}(0)=n\left(p e^{0}+1-p\right)^{n-1} p e^{0}=n(1)^{n-1} p=n p=E(X) \\
& M_{x}^{\prime \prime}(t)=n(n-1)\left(p e^{t}+1-p\right)^{n-2}\left(p e^{t}\right)^{2}+n\left(p e^{t}+1-p\right)\left(p e^{n}\right) \\
& \text { So } \quad M_{x}^{\prime \prime}(0)=n(n-1)(p+1-p)^{n-2}(p)^{2}+n(p+1-p)^{n-1}(p)=n(n-1) p^{2}+n p=E\left(X^{2}\right) \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=n(n-1) p^{2}+n p-(n p)^{2}=A^{2} p^{2}-n p^{2}+n p+n^{2} p^{2}=n p-n p^{2} \\
& =n p(1-p) \text { yes! }
\end{aligned}
$$

2. Suppose random variable X has probability mass function $P(X=x)=\left(\frac{27}{40}\right)\left(\frac{1}{3}\right)^{x}$, for integers $0 \leq x \leq 3$.
(a) Verify that this is a valid probability mass function. to be continued.
(b) Compute the expected value of X from the pmf.
(c) Find the moment generating function $M_{X}(t)$. If you think for a moment (ha!), it is possible to write $M_{X}(t)$ without using any summation signs or addition symbols.
(d) Compute $M_{X}^{\prime}(0)$. Does your answer agree with your answer for part (b)?
