Math 222 - 18 October 2019
RECALL: Moment - generating function
$$(ngf)$$
 of a random Variable
 X is $defined$ $M_X(t) = E(e^{tX}) = \sum_{k} e^{tx} P(X = x)$
Equivalent h : $M_X(t) = 1 + E(X)t + E(X^*)\frac{t^2}{2} + E(X^*)\frac{t^4}{2!} \cdots E(X^*)\frac{t^6}{n!} \cdots$
 \Rightarrow To recove $E(X^*)$, differentiate $M_X(t)$ r times and evaluate of $t=0$.
 \Rightarrow Th rules X and Y have the same rugfs, then they have the
same distribution.
2. Suppose random variable X has probability mass function $P(X = x) = \frac{27}{40} {\binom{1}{2}}^*$, for integers $0 \le x \le 3$.
(a) Verify that this is a valid probability mass function.
 \bullet probabilities at not probability mass function.
 \bullet probability for $x = \frac{27}{40} (1 \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2}) = \frac{27}{40} (\frac{1}{(1 \pm \frac{1}{2})}) = \frac{27}{40} (\frac{1}{(1 \pm \frac{1}{$

$$M_{X}(t) = \frac{81 - e^{4t}}{40(3 - e^{t})} \qquad M'_{X}(t) = \frac{40(3 - e^{t})(-4e^{4t}) - (81 - e^{4t})(40)(-e^{t})}{40^{2}(3 - e^{t})^{2}} \qquad \sqrt{2}$$

$$M'_{X}(0) = \frac{40(3 - e^{t})(-4e^{4t}) - (81 - e^{4t})(40)(-1)}{40^{2}(3 - e^{t})^{2}} = \frac{-8 + 80}{40(4)} = \frac{72}{160} = \frac{9}{20}$$

1. Let *X* be a discrete random variable with mgf $M_X(t)$, and let Y = aX + b. (a) Show that the mgf of *Y* is $e^{tb}M_X(at)$. $M_{Y}(t) = E(e^{tY}) = E(e^{t(aX+b)}) = E(e^{tb}e^{atX}) = e^{tb}E(e^{(at)X}) = e^{tb}M_{X}(at)$ Linearity of Expected Value If Y=aX+b, then My(t) = e^{bt} Mx(at). (b) Use the mgf of *Y* to show that E(Y) = aE(X) + b and $Var(Y) = a^2Var(X)$. differentiate: M'x(t) = bebt Mx(at) + ebt M'x(at) a $M'_{y}(t) = e^{bt} (b M_{x}(at) + a M'_{x}(at))$ $M'_{Y}(O) = e^{\circ} \left(b M_{X}(O) + a M'_{X}(O) \right)$ Thus: $E(X) = b + a \tilde{E}(X)$ Similarly: $M''_{x}(t) = e^{bt} (b^2 M_{x}(at) + 2ab M'_{x}(at) + a^2 M''_{x}(at))$ So: $E(Y^2) = M''_Y(0) = b^2 M_X(0) + 2ab M'_X(0) + a^2 M''_X(0) = b^2 + 2ab E(X) + a^2 E(X^2)$ Thus $Var(Y) = E(Y^2) - E(Y)^2 = b^2 + 2ab E(X) + a^2 E(X^2) - (b + aE(X))^2$ $= a^{2} E(X^{2}) - a^{2} E(X)^{2} = a^{2} Var(X)$ $e^{2} = \sum_{k=1}^{\infty} \frac{z^{k}}{k!}$ 2. If $X \sim \text{Poisson}(\mu)$ show that $M_X(t) = e^{\mu(e^t - 1)}$. $M_{X}(t) = E(e^{tX}) = \sum_{\chi=0}^{\infty} e^{tx} - \frac{m^{\chi}}{\chi!} = e^{-m} \sum_{\chi=0}^{\infty} e^{tx} \frac{m^{\chi}}{\chi!} = e^{-m} \sum_{\chi=0}^{\infty} \frac{e^{t}}{\chi!} \frac{m^{\chi}}{\chi!} = e^{-m} \sum_{\chi=0}^{\infty} \frac{(e^{t}m)^{\chi}}{\chi!}$ $P(X=x) = e^{-m} \frac{m^{\chi}}{\chi!} = e^{-m} e^{m} e^{t} - m = e^{m} (e^{t} - 1)$

3. Let *X* represent the number of insurance policies sold by an agent in a day. The moment generating function of *X* is $M_X(t) = 0.45e^t + 0.35e^{2t} + 0.15e^{3t} + 0.05e^{4t}$, for $-\infty < t < \infty$. Calculate the standard deviation of *X*.

We will do this on Monday.

(This problem is challenging ... and fun!

4. The monthly amount of time *X* (in hours) during which a manufacturing plant is inoperative due to equipment failures or power outages follows approximately a distribution with the following moment generating function:

$$M_X(t) = \left(\frac{1}{1 - 7.5t}\right)^2$$

The amount of loss in profit due to the plant being inoperative is given by $Y = 12X + 1.25X^2$. Determine the variance of the loss in profit.