Math 262-23 October 2019

1. Give an example of a continuous random variable.

- rainfall in a month
- height of a building
- The value that

DEF: A rv. X is continuous if both of the following hold:
(1) The possible values of X form a_{n} interval or union of intervals
(2) $P(X=c)=0$ for any $c \in \mathbb{R}$

Probability density function (pelf): of a continues iv X is a function $f(x)$ such that for $a \leq b, P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$.
NOTE: $P(X=a)=P(a \leq X \leq a)=\int_{a}^{a} f(x) d x=0$
Also: $f(x) \geq 0$ for all x, and $\int_{-\infty}^{\infty} f(x) d x=1$
2. Suppose that a continuous random variable Y has a pdf that is constant on the interval $[5,20]$ and zero otherwise.
(a) What is the constant value of the pdf?

$$
(\text { Height })(15)=1
$$

so height $=\frac{1}{15}$
(b) What is $P(12<Y<17)$?

$P(12 \leq Y \leq 17)$
Since $P(12=Y)=0, P(17=Y)=0$
(c) What is the cdf of Y ?

$$
\begin{aligned}
F(y) & =P(Y \leqslant y)=\int_{5}^{y} \frac{1}{15} d t \\
& =\left.\frac{t}{15}\right|_{5} ^{y}=\frac{y}{15}-\frac{5}{15}
\end{aligned}
$$

$$
=\int_{12}^{17} \frac{1}{15} d y=\left.\frac{y}{15}\right|_{12} ^{17}=\frac{1}{3}
$$

CUMULATIVE DISTRIBUTION FUNCTION ($c d t$) of a continuous $r v X$ is defined $F(x)=P(\mathbb{X} \leq x)=\int_{-\infty}^{x} f(t) d t$
$\tau_{\text {pdf }}$ of X
PROPERTIES: $\quad \lim _{x \rightarrow-\infty} F(x)=0, \quad \lim _{x \rightarrow \infty} F(x)=1$
$F(x)$ is non -decreasing (ie., it's always increasing or constant)
$F^{\prime}(x)=f(x) \longleftarrow$ Fundamental Theorem of Calculus
3. Suppose that a continuous random variable X has probability density function (pdf) given by $f(x)=k x(4-x)$ for $0 \leq x \leq 4$, and $f(x)=0$ otherwise.
(a) What is the value of k ?

$$
\begin{aligned}
& \text { (a) What is the value of } k \text { ? } \\
& \qquad \int_{0}^{4} k x(4-x) d x=\left.k\left(2 x^{2}-\frac{1}{3} x^{3}\right)\right|_{0} ^{4}=\frac{32}{3} k=1 \\
& \text { so } k=\frac{3}{32} \\
& \text { (b) Find } P(x>3 \text { or } x<1) \text {. } \\
& \qquad P(X<1)=\int_{0}^{1} \frac{3}{32} x(4-x) d x=\frac{5}{32}
\end{aligned}
$$

By symmetry, $P(x<1)+P(x>3)=2 \cdot \frac{5}{32}=\frac{5}{16}$
4. Suppose that the cdf of a random variable X is $F(x)=1-e^{-5 x}$ for $x>0$, and $F(x)=0$ otherwise.
(a) What is the pdf of X ?
differentiate $F(x)$:

$$
f(x) \quad f(x)=\frac{d}{d x}\left(1-e^{-5 x}\right)=5 e^{-5 x} \quad \text { for } x>0
$$

$$
f(x)=0 \text { for } x \leq 0
$$

(b) What is $P\left(\frac{1}{4}<X<\frac{1}{3}\right)$? Can you get this from either the cdf or the pdf?

$$
\begin{aligned}
p d f: \quad P\left(\frac{1}{4}<x<\frac{1}{3}\right)=\int_{\frac{1}{4}}^{\frac{1}{3}} f(x) d x=\int_{\frac{1}{4}}^{\frac{1}{3}} 5 e^{-5 x} d x=-\left.e^{-5 x}\right|_{\frac{1}{4}} ^{\frac{1}{3}}=-e^{-5 / 3}+e^{-5 / 4} \approx 0.098 \\
D(\perp, v, 1)-P(V<1)-P(v, 1)=F\left(\frac{1}{2}\right)-F\left(\frac{1}{4}\right)
\end{aligned}
$$

cat. $P\left(\frac{1}{4}<x<\frac{1}{3}\right)=P\left(x<\frac{1}{3}\right)-P\left(x<\frac{1}{4}\right)=F\left(\frac{1}{3}\right)-F\left(\frac{1}{4}\right)$

5. Let Y be a random variable with pdf given by $f(x)=\left\{\begin{array}{cc}\frac{y}{2} & \text { if } 0 \leq y \leq 2, \\ 0 & \text { otherwise. }\end{array}\right.$ to be continued...
(a) Find a value $\eta_{0.25}$ such that $P\left(Y \leq \eta_{0.25}\right)=0.25$.
(b) What is the median of Y ?

