

CUMULATIVE DISTRIBUTION FUNCTION (cdf) of a continuous

$$rV \ X \ is defined F(x) = P(X = x) = \int_{-\infty}^{x} f(t) dt$$

 $-\infty \ Cpdf \ of X$
PROPERTIES: $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$
 $x \to -\infty$
 $F(x) \ is \ non - decreasing (i.e., it's always increasing or constant)$
 $F'(x) = f(x) \leftarrow Fundamental Theorem of Cakulus$

3. Suppose that a continuous random variable *X* has probability density function (pdf) given by f(x) = kx(4 - x) for $0 \le x \le 4$, and f(x) = 0 otherwise.

(a) What is the value of k?

$$\int_{0}^{4} kx(4-x) dx = k (2x^{2} - \frac{1}{3}x^{3}) \Big|_{0}^{4} = \frac{3^{2}}{3}k = 1$$

$$\int_{0}^{4} kx(4-x) dx = k (2x^{2} - \frac{1}{3}x^{3}) \Big|_{0}^{4} = \frac{3^{2}}{3}k = 1$$
(b) Find $P(X > 3 \text{ or } X < 1)$.

$$P(X < 1) = \int_{0}^{1} \frac{3}{3^{2}} x(4-x) dx = \frac{5}{3^{2}}$$
By symmetry, $P(X < 1) + P(X > 3) = 2 \cdot \frac{5}{3^{2}} = \frac{5}{16}$

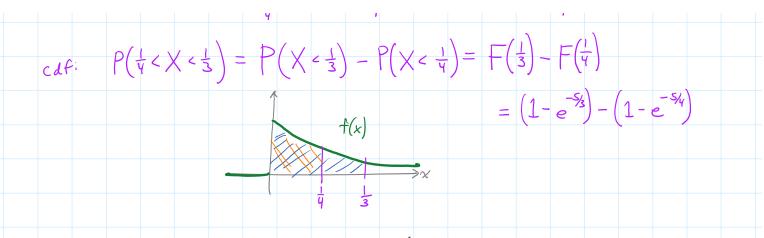
4. Suppose that the cdf of a random variable *X* is $F(x) = 1 - e^{-5x}$ for x > 0, and F(x) = 0 otherwise.

(a) What is the pdf of X? differentiate F(x):

f(x)

$$f(x) = \frac{d}{dx} (1 - e^{-5x}) = 5e^{-5x}$$
 for $x > 0$
= $f(x) = 0$ for $x = 0$

(b) What is $P\left(\frac{1}{4} < X < \frac{1}{3}\right)$? Can you get this from *either* the cdf or the pdf? $Pdf: P\left(\frac{1}{4} < X < \frac{1}{3}\right) = \int_{\frac{1}{4}}^{\frac{1}{3}} f(x) dx = \int_{\frac{1}{4}}^{\frac{1}{3}} 5e^{-5x} dx = -e^{-5x} \left|_{\frac{1}{4}}^{\frac{1}{3}} = -e^{-5x} + e^{-5x} + e^{$



5. Let Y be a random variable with pdf given by $f(x) = \begin{cases} \frac{y}{2} & \text{if } 0 \le y \le 2, \\ 0 & \text{otherwise.} \end{cases}$

(a) Find a value $\eta_{0.25}$ such that $P(Y \le \eta_{0.25}) = 0.25$.

(b) What is the median of *Y*?