PERCENTILE: For $p \in[0,1]$, the $(100 p)^{\text {th }}$ percentile is the value $\eta_{p}$ such that $P\left(X \leq \eta_{p}\right)=p$. Equivalent, $p=\int_{-\infty}^{\eta_{p}} f(x) d x$, or $F\left(\eta_{p}\right)=p$.

Example: $p=0.9$ means the $90^{\text {th }}$ percentile

5. Let $Y$ be a random variable with pdf given by $f(\ngtr)=\left\{\begin{array}{cc}\frac{y}{2} & \text { if } 0 \leq y \leq 2 \text {, } \\ 0 & \text { otherwise. }\end{array}\right.$
(a) Find a value $\eta_{0.25}$ such that $P\left(Y \leq \eta_{0.25}\right)=0.25$.

Note: $p=0.25$

$$
\frac{1}{4}=\int_{-\infty}^{y_{0.25}} f(y) d y
$$


(b) What is the median of $Y$ ?

$$
\eta_{0.25}=1
$$

$\rightarrow 50^{\text {th }}$ percentile: $p=0.5$

$$
\begin{aligned}
\frac{1}{2}= & \int_{-\infty}^{\eta_{0.5}} f(y) d y=\int_{0}^{\eta_{0.5}} \frac{y}{2} d y=\left.\frac{y^{2}}{4}\right|_{0} ^{\eta_{0.5}}=\frac{\eta_{0.5}^{2}}{4}-0 \\
& \frac{1}{2}=\frac{\eta_{0.5}^{2}}{4} \Rightarrow 2=\eta_{0.5}^{2} \Rightarrow \sqrt{\sqrt{2}}=\eta_{0.5}
\end{aligned}
$$


"Law of the
Unconscious Statistician" $\quad E(h(X))=\sum_{x} h(x) p(x)$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =\int_{\infty}^{\infty}(x-\mu)^{2} f(x) d x
\end{aligned}
$$



The mean gives the "balance point" of the distribution

Formulas that apply to both discrete \& continuous:

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}, \quad E(a X+b)=a E(X)+b, \quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

1. Let $U \sim$ Unif[0,5]. pdf is $f(u)=\frac{1}{5}$ or $[0,5]$
(a) What are the mean and variance of $U$ ?

Meas: $E(U)=\int_{0}^{5} u f(u) d u=\int_{0}^{5} \frac{u}{5} d u=\left.\frac{u^{2}}{10}\right|_{0} ^{5}=\frac{25}{10}=\frac{5}{2}$

$$
E\left(U^{2}\right)=\int_{0}^{5} u^{2} f(u) d u=\int_{0}^{5} \frac{u^{2}}{5} d u=\left.\frac{u^{3}}{15}\right|_{0} ^{5}=\frac{125}{15}=\frac{25}{3}
$$



Variance: $\operatorname{Var}(U)=E\left(U^{2}\right)-E(U)^{2}=\frac{25}{3}-\left(\frac{5}{2}\right)^{2}=\frac{25}{3}-\frac{25}{4}=\frac{100-75}{12}=\frac{25}{12}=\frac{(B-A)^{2}}{12}$
(b) Let $V=3 U+2$. What are the mean and variance of $V$ ?
mean: $E(V)=E(3 U+2)=3 E(U)+2=3 \frac{5}{2}+2=\frac{15}{2}+2=\frac{19}{2}$ on $[A, B]$

Var: $\operatorname{Var}(V)=\operatorname{Var}(3 U+2)=3^{2} \operatorname{Var}(U)=9 \cdot \frac{25}{12}=\frac{75}{4}$
(c) What kind of distribution does $V$ have? How do you know?

$$
V \sim U \text { if }[2,17]
$$

tricky
Weill return to this...
2. Let $Y$ be a random variable with pdf given by $f(y)=\left\{\begin{array}{c|c}\frac{y}{2} & \text { if } 0 \leq y \leq 2, \\ 0 & \text { otherwise. }\end{array}\right.$
(a) What is the expected value of $Y$ ?

$$
E(Y)=\int_{0}^{2} y\left(\frac{y}{2}\right) d y=\int_{0}^{2} \frac{y^{2}}{2} d y=\left.\frac{y^{3}}{6}\right|_{0} ^{2}=\frac{2^{3}}{6}-\frac{0^{3}}{6}=\frac{8}{6}=\frac{4}{3}
$$

(b) What is $E\left(Y^{2}\right)$ ?

$$
E\left(Y^{2}\right)=\int_{0}^{2} y^{2}\left(\frac{y}{2}\right) d y=\int_{0}^{2} \frac{y^{3}}{2} d y=\left.\frac{y^{4}}{8}\right|_{0} ^{2}=\frac{2^{4}}{8}-0=2
$$

(c) What is $\operatorname{Var}(Y)$ ?

$$
\operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=2-\left(\frac{4}{3}\right)^{2}=4-\frac{16}{9}=\frac{2}{9}
$$

(d) What is the moment generating function $M_{Y}(t)$ ?

$$
\int u d v=u v-\int v d u
$$

$$
\begin{aligned}
& M_{y}(t)=E\left(e^{t y}\right)=\int_{0}^{2} e^{t y} \frac{y}{2} d y=\frac{1}{2} \int_{0}^{2} \sum_{\substack{u \\
u}}^{y} \underbrace{e^{t y} d y}_{d v}=\frac{1}{2}\left(\left[y \cdot \frac{1}{t} e^{t y}\right]_{0}^{t y}-\int_{0}^{2} \frac{1}{t} e^{t y} d y\right) \\
& \text { If } t \neq 0: d v=e^{t y} d y \\
&=\frac{1}{2}\left[\frac{y}{t} e^{t y}-\frac{1}{t^{2}} e^{t y}\right]_{0}^{2}=\frac{1}{2}\left[\frac{2}{t} e^{2 t}-\frac{1}{t^{2}} e^{2 t}-\left(0-\frac{1}{t^{2}}\right)\right] \\
&=\frac{1}{2}\left[e^{2 t}\left(\frac{2}{t}-\frac{1}{t^{2}}\right)+\frac{1}{t^{2}}\right]=e^{2 t} \frac{2 t-1}{2 t^{2}}+\frac{1}{2 t^{2}} \\
& \text { If } t=0: M_{y}(0)=\int_{0}^{2} e^{0} \frac{y}{2} d y=\int_{0}^{2} \frac{y}{2} d y=\left.\frac{y^{2}}{4}\right|_{0} ^{2}=1
\end{aligned}
$$

Thus:

$$
M_{Y}(t)=\left\{\begin{array}{l}
1 \text { if } t=0 \\
e^{2 t}\left(\frac{2 t-1}{2 t^{2}}\right)+\frac{1}{2 t^{2}} \text { if } t \neq 0
\end{array}\right.
$$



Note: Continuous at $t=0$
3. Let $X \sim \operatorname{Unif}[A, B]$. Show that the mgr of $X$ is $M_{X}(t)=\left\{\begin{array}{cl}\frac{e^{B t}-e^{A t}}{(B-A) t} & \text { if } t \neq 0 \\ 1 & \text { if } t=0\end{array}\right.$. Then use properties of mgfs to verify your answer for 1(c).

