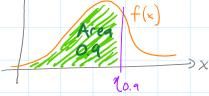
PERCENTILE: For
$$p \in [0,1]$$
, the $(100p)^{th}$ percentile is the value np such that $P(X = np) = p$. Equivalently, $p = \int_{-\infty}^{np} f(x) dx$, or $F(np) = p$.

Example: p=0.9 means the 90th percentile

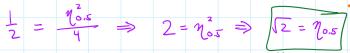


- if $0 \le y \le 2$, 5. Let *Y* be a random variable with pdf given by $f(x) = \begin{cases} \frac{y}{2} \\ 0 \end{cases}$ otherwise.
 - (a) Find a value $\eta_{0.25}$ such that $P(Y \le \eta_{0.25}) = 0.25$.

(b) What is the median of *Y*?

50th percentile: p=0.5

$$\frac{1}{2} = \int_{-\infty}^{\eta_{0.5}} f(y) dy = \int_{0}^{\eta_{0.5}} \frac{y}{2} dy = \frac{y^{2}}{4} \Big|_{0}^{\eta_{0.5}} = \frac{\eta_{0.5}^{2}}{4} - 0$$



	Discrete ru with pmf p		pdf f(x)	
	with part p	(x)	PAT ((A)	1
mean	$M = E(X) = \sum_{x} x$	E p(x) $M = E(x)$	$\zeta = \int_{-\infty}^{\infty} x f(x) dx$	f(x)
"Law of the Unconscious Statistician"	$E(h(X)) = \sum_{x} h(x)$		$\int_{-\infty}^{\infty} h(x)f(x) dx$	mean mean
Variance	$Var(X) = E[(X-u)^2]$	Var(X) =	E[(X-n)2]	The mean gives the "balance point" of
	$= \sum_{x} (x - \mu)^{2}$	$\rho(x) =$	$\int_{\infty}^{\infty} (x-n)^2 f(x) dx$	the distribution
moment generating function	$M_{x}(t) = E(e^{tx}) = \sum_{x} e^{tx}$	$e^{tx}p(x)$ $M_x(t) = E$	$f(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$	
FORMULAS TH	AT APPLY TO	BOTH DISCRETE	& CONTINUOW:	
Var(X) = E(1)	X^2) - $E(X)^2$,	E(aX+b)=aE(X)	+ b, Var(a X + b) =	a² Var (X)
1. Let $U \sim \text{Unif}[0,5]$.	— pdf is f($u) = \frac{1}{5} \propto [0,5]$	f(u)	
(a) What are the mea	n and variance of <i>U</i> ?		7	
Mean E(U)=	$\int_{0}^{5} u f(u) du = \int_{0}^{5} \frac{u}{5} du$	$du = \frac{u^2}{10} \Big _{0}^{5} = \frac{25}{10} = \frac{5}{2}$	5	1 u
$E(U^2) =$	$\int_0^5 u^2 f(u) du = \int_0^5 \frac{u^2}{5}$	$du = \frac{u^3}{15} \Big _{0}^{5} = \frac{125}{15} = \frac{25}{3}$	2	
Variance: Var ())=E(U2)-E(U)2=	$\frac{25}{3} - \left(\frac{5}{2}\right)^2 = \frac{25}{3} - \frac{23}{4}$	$= \frac{100 - 75}{12} = \frac{25}{12} = \frac{25}{12}$	
(b) Let $V = 3U + 2.V$	Vhat are the mean and	l variance of <i>V</i> ?	(Variance of a
		$(v) + 2 = 3\frac{5}{2} + 2 =$	$=\frac{15}{2}+2=\frac{19}{2}$	Unit. rv.
Var: Var(V) =	$Vor(3U+2) = 3^2$	$\sqrt{ar}(0) = 9 \cdot \frac{25}{12} = \frac{7}{6}$	<u>5</u>	
(c) What kind of dist	ribution does V have?	How do you know?		
V~ Unif[2	2, 17]	We'll return to this		

2. Let <i>Y</i> be a random variable with pdf given by $f(y) = \begin{cases} \frac{y}{2} & \text{if } 0 \le y \le 2, \\ 0 & \text{otherwise.} \end{cases}$
(a) What is the expected value of <i>Y</i> ?
$E(Y) = \int_{0}^{2} \gamma(\frac{y}{2}) dy = \int_{0}^{2} \frac{y^{2}}{2} dy = \frac{y^{3}}{6} \Big _{0}^{2} = \frac{2^{3}}{6} - \frac{0^{3}}{6} = \frac{8}{6} = \frac{4}{3}$
(b) What is $E(Y^2)$?
$E(Y^2) = \int_0^2 y^2 \left(\frac{y}{2}\right) dy = \int_0^2 \frac{y^3}{2} dy = \frac{y^4}{8} \Big _0^2 = \frac{2^4}{8} - 0 = 2$
(a) Mile at its Man(M) 2
(c) What is $Var(Y)$?
$Var(Y) = E(Y^2) - E(Y)^2 = 2 - (\frac{4}{3})^2 = 4 - \frac{16}{9} = \frac{2}{9}$
(d) INTest is the manager consenting function M (t)?
(d) What is the moment generating function $M_Y(t)$?
$M_{\gamma}(t) = E(e^{t\gamma}) = e^{t\gamma} \frac{\gamma}{2} d_{\gamma} = \frac{1}{2} \int_{\gamma} \gamma e^{t\gamma} d_{\gamma} = \frac{1}{2} \left[\gamma + e^{t\gamma} - \sqrt{1 + e^{t\gamma}} \right] d_{\gamma}$
The very veter
$M_{\gamma}(t) = E(e^{t\gamma}) = \int_{0}^{2} e^{t\gamma} \frac{\gamma}{2} d\gamma = \frac{1}{2} \int_{0}^{2} \frac{\gamma}{2} e^{t\gamma} d\gamma = \frac{1}{2} \left[\gamma \cdot \frac{1}{2} e^{t\gamma} d\gamma \right]$ $If \ t \neq 0: u = \gamma dv = e^{t\gamma} d\gamma$ $dv = e^{t\gamma} d\gamma$
$= \frac{1}{2} \left[\frac{y}{t} e^{t \gamma} - \frac{1}{t^2} e^{t \gamma} \right]_0^2 = \frac{1}{2} \left[\frac{2}{t} e^{2t} - \frac{1}{t^2} e^{2t} - (0 - \frac{1}{t^2}) \right]$
$= \frac{1}{2} \left[e^{2t} \left(\frac{2}{t} - \frac{1}{t^2} \right) + \frac{1}{t^2} \right] = e^{2t} \frac{2t - 1}{2t^2} + \frac{1}{2t^2}$
$= \overline{z} \left[e \left(\overline{t} - \overline{t^2} \right) + \overline{t^2} \right] = e \left[2\overline{t^2} + \overline{2}\overline{t^2} \right]$
If $t=0$: $t=0$: $t=0$:
If $t=0$: $M_{Y}(0) = \int_{0}^{2} e^{0} \frac{y}{2} dy = \int_{0}^{2} \frac{y}{2} dy = \frac{y^{2}}{4} \Big _{0}^{2} = 1$
graph of My (t)
Thus: $1 \text{if} t = 0$
$M_{\gamma}(t) = \frac{1}{2}$
Thus: $M_{\gamma}(t) = \begin{cases} 1, & \text{if } t = 0 \\ e^{2t} \left(\frac{2t-1}{2t^2}\right) + \frac{1}{2t^2} & \text{if } t \neq 0 \end{cases}$
Note: continuous at t=0

3. Let $X \sim \text{Unif}[A, B]$. Show that the mgf of X is $M_X(t) = \begin{cases} \frac{e^{Bt} - e^{At}}{(B - A)t} & \text{if } t \neq 0 \\ 1 & \text{if } t = 0 \end{cases}$. Then use properties of mgfs to verify your answer for 1(c).