Moments of exponential distribution (with $\lambda=1) \ldots$

$$
E\left(X^{n}\right)=\int_{0}^{\infty} x^{n} e^{-x} d x \quad X \sim \operatorname{Exp}(1)
$$

... are related to the GAMMA FUNCTION:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

For $n=1,2,3, \ldots, \quad \Gamma(n)=(n-1)$!
$T(\alpha)$ extends the factorial to non-integer values!
For $\alpha>1, \quad T(\alpha)=(\alpha-1) \Gamma(\alpha-1)$
If $\alpha=n!(n-1)!=(n-1)(n-2)!$

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi}
$$

GAMMA DISTRIBUTION:
$X \sim \underset{\text { shape }}{\operatorname{Gamma}(\alpha, \beta)}$ has pdf$\quad f(x ; \alpha, \beta)= \begin{cases}\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / p} \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}$
If $\alpha=1$, then gamma distribution is exponential with $\lambda=\frac{1}{\beta}$.
MEAN: $E(X)=\alpha \beta$
VARIANCE: $\quad \operatorname{Var}(X)=\alpha \beta^{2}$
$\sqrt[\square]{1}$ CAUTION: Various parameterizations are commonly used for the gamma distribution. Be very careful when using sources other than our textbook!
R commands: $\operatorname{pgamma}\left(x, \alpha, \frac{1}{\beta}\right)$ or $\operatorname{pgamma}(x, \alpha$, scale $=\beta)-\operatorname{give} P(\bar{X} \leq x)$

$$
\operatorname{pgamma}(x, \alpha, \bar{\beta}) \text { or } \operatorname{Pgamma}(x, \alpha, \text { scale }=P) \quad \text { if } \bar{X} \sim \operatorname{Gamma}(\alpha, \beta)
$$

$$
\operatorname{qgamma}\left(p, \alpha, \frac{1}{\beta}\right) \propto \operatorname{qganma}(p, \alpha, \text { scale }=\beta) \mathcal{g i v e}^{\operatorname{giv}} \eta_{p} \text { such }
$$

that $p\left(X \leq \eta_{p}\right)=p$
The sum of n independent $\operatorname{Exp}(\lambda)$ is a $\operatorname{Gamma}\left(n, \frac{1}{\lambda}\right)$ random variable. (more on this in chapter 4)
(more on this in napier 7 ,

1. Suppose that the time between goals in a hockey game is exponentially distributed with mean 18 minutes (ignore timeouts and stoppages). What is the probability that the second goal occurs less than 30 minutes after the game starts?

$$
\begin{aligned}
& Y=X_{1}+X_{2} \quad \text { if } X_{1}, X_{2} \sim \operatorname{Exp}\left(\lambda=\frac{1}{18}\right), \text { then } Y \sim \operatorname{Gamma}(\alpha=2, \beta=18) . \\
& P(Y<30)=\text { gamma }\left(30,2, \frac{1}{18}\right)=0.496
\end{aligned}
$$

2. Suppose that a call center receives calls according to a Poisson distribution at a rate of 2 calls per minute. Let Y be the time between 10:00 am and the $5^{\text {th }}$ call received after 10:00 am.
(a) What are the mean and variance of Y ?

Time between calls is $\operatorname{Exp}(2)$. $\quad Y$ is the sum of $5 \operatorname{Exp}(2)$ rus.
Then $I \sim \operatorname{Gamma}\left(5, \frac{1}{2}\right)$.

$$
E(Y)=\frac{5}{2} \quad \text { and } \operatorname{Var}(Y)=\alpha \beta^{2}=5\left(\frac{1}{2}\right)^{2}=\frac{5}{4}
$$

(b) What is the pdf of Y ?

$$
f\left(y ; 5, \frac{1}{2}\right)=\frac{1}{\left(\frac{1}{2}\right)^{5} \uparrow(5)} y^{4} e^{-2 y}=\frac{4}{3} y^{4} e^{-2 y}
$$

(c) What is $P(Y<1)$?

$$
P(Y<1)=\int_{0}^{1} \frac{4}{3} y^{4} e^{-2 y} d y=\operatorname{pgamma}(1,5,2)=0.0526
$$

3. For large α, the gamma distribution converges to a normal distribution with mean $\alpha \beta$ and variance $\alpha \beta^{2}$. Investigate this in the case that $\beta=1$.
(a) Let $X \sim \operatorname{Gamma}(10,1)$, and compute $P(X \leq 8), P(X \leq 10)$, and $P(X \leq 15)$.

$$
\begin{aligned}
& P(X \leq 8)=0.2834 \\
& P(X \leq 10)=0.5421
\end{aligned}
$$

$$
\begin{aligned}
& P(X \leq 15)=0.9301 \\
& E(X)=10(1)=10
\end{aligned}
$$

$$
P(X \leq 10)=0.5421 \quad \begin{array}{ll}
E(X)=10(1)=10 \\
\operatorname{Var}(X)=10(1)^{2}=10, \text { so } \sigma_{X}=\sqrt{10}
\end{array}
$$

(b) Let $Z \sim N(10, \sqrt{10})$, and compute $P(Z \leq 8), P(Z \leq 10)$, and $P(Z \leq 15)$.

$$
\begin{aligned}
\hat{\imath}_{\text {mean }} \quad P(z \leq 8) & =0.2635 \quad P(z \leq 15)=0.9431 \\
& P(z \leq 10)=\frac{1}{2}
\end{aligned}
$$

(c) Now choose a larger value of α and compare $X \sim \operatorname{Gamma}(\alpha, 1)$ with $Z \sim N(\alpha, \sqrt{\alpha})$.

