Math 262 — 1 November 2019
Moments of exponential distribution (with \=1)
$E(X^n) = \int_0^\infty x^n e^{-x} dx \qquad X \sim Exp(1)$
are related to the GAMMA FUNCTION:
$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$
For $n=1,2,3,$, $T(n)=(n-1)!$ $T(\alpha)$ extends the factorial to non-integer values!
For $\alpha > 1$, $T(\alpha) = (\alpha - 1)T(\alpha - 1)$ If $\alpha = n$: $(n-1)! = (n-1)(n-2)!$
$Tf = n \cdot (n-1)! = (n-1) (n-2)!$ $T(\frac{1}{2}) = \sqrt{\pi}, T(\frac{3}{2}) = \frac{1}{2}T(\frac{1}{2}) = \frac{1}{2}\sqrt{\pi}$
$X \sim Gamma(\alpha, \beta)$ has $pdf f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta^{\alpha}} T(\alpha) & \text{if } x \leq 0 \end{cases}$ Shape $\int_{-\infty}^{\infty} S(\alpha) d\alpha$
If $d=1$, then gamma distribution is exponential with $\lambda=\frac{1}{\beta}$.
MEAN: $E(X) = \alpha \beta$
VARIANCE: $Var(X) = \alpha \beta^2$
CAUTION: Various parameterizations are commonly used for the gamma distribution. Be very careful when using sources other than our textbook!
R COMMANDS: pgamma(x, α , β) or pgamma(x, α , scale= β) — give $P(X \leq x)$; $f : X \sim Gamma(x, \beta)$
$qganna(p, \alpha, \frac{1}{\beta}) \propto qganna(p, \alpha, scale = \beta) \qquad qive \qquad np such $ that $P(X \leq n_p) = p$
The sum of n independent $Exp(x)$ is a Gamma(n, $\frac{1}{x}$) random variable. (more on this in chapte 4)
(More on This in Chapter 1)

1. Suppose that the time between goals in a hockey game is exponentially distributed with mean 18 minutes (ignore timeouts and stoppages). What is the probability that the second goal occurs less than 30 minutes after the game starts?

$$Y=X_1+X_2$$
 if $X_1, X_2 \sim Exp(X=\frac{1}{18})$, then $Y \sim Gamma(x=2, \beta=18)$.

$$P(Y < 30) = pgamma(30, 2, \frac{1}{18}) = 0.496$$

- 2. Suppose that a call center receives calls according to a Poisson distribution at a rate of 2 calls per minute. Let Y be the time between 10:00am and the 5th call received after 10:00am.
 - (a) What are the mean and variance of *Y*?

Time between calls is
$$Exp(2)$$
. Y is the sum of 5 $Exp(2)$ rus

$$Y$$
 is the sun of 5 $Exp(2)$ rus.

$$E(Y) = \frac{5}{2}$$
 and $Var(Y) = \alpha \beta^2 = 5(\frac{1}{2})^2 = \frac{5}{4}$

(b) What is the pdf of *Y*?

$$f(\gamma; 5, \frac{1}{2}) = \frac{1}{(\frac{1}{2})^5 \Gamma(5)} \gamma^4 e^{-2\gamma} = \frac{4}{3} \gamma^4 e^{-2\gamma}$$

(c) What is P(Y < 1)?

$$P(Y<1) = \int_0^1 \frac{4}{3} y^4 e^{-2y} dy = pganna(1,5,2) = 0.0526$$

- 3. For large α , the gamma distribution converges to a normal distribution with mean $\alpha\beta$ and variance $\alpha\beta^2$. Investigate this in the case that $\beta=1$.
 - (a) Let $X \sim \text{Gamma}(10, 1)$, and compute $P(X \leq 8)$, $P(X \leq 10)$, and $P(X \leq 15)$.

$$P(X \le 8) = 0.2834$$
 $P(X \le 15) = 0.9301$ $P(X \le 10) = 0.9301$

			P)(X =	(10)= (D.S	54 2	.			E(i	X)= X)=	10 (1 10(1)) =	10,	So	0,	; = S	(0			
(b) Let	Z ~	N(10	$(\sqrt{10})$), and	d cor	nput	e P(2	$Z \leq 8$	B), P($Z \leq 1$	10), a	nd P	$(Z \leq$	15).								
				`. ^c			P(=	2 5	8) =	0.	263	7.		P(Z	< t	5) =	0,	94	31				
							P(2	٤	: (٥	= -	2												
(c) No	w ch	oose	a larg	er va	ılue	of α a	and c	omp	are X	′ ∼ Ga	amma	a(α, 1) wit	:h Z ~	~ N(c	$(1,\sqrt{\alpha})$						