1. Let X and Y have joint pdf $f(x, y)=6 x y^{2}$ for $0 \leq x \leq 1$ and $0 \leq y \leq 1$.

Check that this is a pdf: $\quad f(x, y) \geq 0$

$$
\int_{0}^{1} \int_{0}^{1} 6 x y^{2} d x d y=1
$$

(a) What is $E(X+Y)$?

The expected value of $h(X, Y)$ is

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \underset{\substack{\text { Values }}}{\substack{\infty \\ \text { density }}} \underset{\substack{x, y)}}{f(x, y)} d x d y
$$

Then:

$$
E(X+Y)=\int_{0}^{1} \int_{0}^{1}(x+y) 6 x y^{2} d x d y=\frac{17}{12}
$$

(b) What is $E(X Y)$?

$$
E(X Y)=\int_{0}^{1} \int_{0}^{1}(x y) 6 x y^{2} d x d y=\frac{1}{2}
$$

(c) What are $E(X)$ and $E(Y)$?

Marginal density of X: $f_{x}(x)=\int_{0}^{1} 6 x y^{2} d y=\left.2 x y^{3}\right|_{y=0} ^{y=1}=2 x$, for $0 \leqslant x \leqslant 1$

$$
\begin{aligned}
& \text { So } E(X)=\int_{0}^{1} x \cdot f_{x}(x) d x=\int_{0}^{1} x \cdot 2 x d x=\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=\frac{2}{3} \\
& \theta r: E(X)=\int_{0}^{1} \int_{0}^{1}(x) 6 x y^{2} d y d x=\int_{0}^{1} x \int_{0}^{1} 6 x y^{2} d y d x=\frac{2}{3} \\
& E(Y)=\int_{0}^{1} \int_{0}^{1} y \cdot 6 x y^{2} d x d y=\frac{3}{4} \quad f_{y}(y)=3 y^{2}
\end{aligned}
$$

(d) How do $E(X)$ and $E(Y)$ relate to $E(X+Y)$ and $E(X Y)$?

$$
\begin{aligned}
E(X)+E(Y) & =E(X+Y) \\
\frac{2}{3}+\frac{3}{4} & =\frac{17}{12}
\end{aligned}
$$

$$
\begin{aligned}
E(X) E(Y) & =E(X Y) \\
\frac{2}{3} \cdot \frac{3}{4} & =\frac{1}{2}
\end{aligned}
$$

If X and Y are independent, then $E(X Y)=E(X) E(Y)$.
(e) What is $\operatorname{Cov}(X, Y)$?

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{x}\right)\left(Y-\mu_{r}\right)\right)
$$

The converse is not true!

Shortcut:

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

Here, $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{2}-\frac{2}{3} \cdot \frac{3}{4}=\begin{gathered}0 \\ \downarrow\end{gathered}$ X and Y are uncorrelated

CORRELATION COEFFICIENT:

$$
\operatorname{Corr}(X, Y)=\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y, Y)}{\sigma_{X} \sigma_{Y}}
$$

Correlation is independent of units of measurement.

$$
-1 \leq p_{x, y} \leq 1
$$

- Independent variables are uncorrelated.
- Uncorrelat ed variables might be dependent see $\$ 4.2$ in the ext

2. Now let X and Y have joint pdf $f(x, y)=3 x+3 y$ for $0 \leq x, 0 \leq y$, and $x+y \leq 1$. ${ }^{1}$
(a) What is $E(X+Y)$?

$$
E(X X+Y)=\int_{0}^{1} \int_{0}^{1-x}(x+y)(3 x+3 y) d y d x=\frac{3}{4}
$$

$$
E(X Y)=\int_{0}^{1} \int_{0}^{1-x} x y(3 x+3 y) d y d x=\frac{1}{10}
$$

(c) What are $E(X)$ and $E(Y)$?

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{1-x}(3 x+3 y) d y=\frac{3}{2}\left(1-x^{2}\right), \quad 0 \leq x \leq 1, \text { so } E(X)=\int_{0}^{1} x \cdot \frac{3}{2}\left(1-x^{2}\right) d x=\frac{3}{8} \\
& f_{y}(y)=\int_{0}^{1-y}(3 x+3 y) d x=\frac{3}{2}\left(1-y^{2}\right), \quad 0 \leq y \leq 1, \text { so } E(Y)=\int_{0}^{1} y \cdot \frac{3}{2}\left(1-y^{2}\right) d y=\frac{3}{8}
\end{aligned}
$$

(d) How do $E(X)$ and $E(Y)$ relate to $E(X+Y)$ and $E(X Y)$?

$$
E(X+Y)=E(X)+E(Y), \quad \text { but } \quad E(X Y) \neq E(X) E(Y)
$$

linearity of expectation here, X and Y are not inclependent
(e) What is $\operatorname{Cov}(X, Y)$?
shortcut formula: $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{10}-\frac{3}{8} \cdot \frac{3}{8}=\frac{1}{10}-\frac{9}{64}=-\frac{13}{320}$

