1. Let $X_{1}, X_{2}, \ldots, X_{300}$ be ind random variables with mean μ_{X} and standard deviation σ_{X}. Also let $T=X_{1}+X_{2}+\cdots+X_{300}$ and $\bar{X}=\frac{T}{300}$.
(a) What are $\mu_{T}, \sigma_{T}, \mu_{\bar{X}}$, and $\sigma_{\bar{X}}$?

Expected value is linear!

$$
\begin{aligned}
& \mu_{T}=E(T)=E\left(X_{1}+\cdots+X_{300}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{300}\right)=\mu_{x}+\cdots+\mu_{x}=300 \mu_{x} \\
& \operatorname{Var}(T)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{300}\right)=300 \sigma_{x}^{2} \quad \text { (Independent rvs) } \\
& \sigma_{T}=\sigma_{x} \sqrt{300} \\
& E(\bar{X})=E\left(\frac{T}{300}\right)=\frac{1}{300} E(T)=\mu_{x} \\
& \operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{T}{300}\right)=\frac{1}{300^{2}} \operatorname{Var}(T)=\frac{\sigma_{x}^{2}}{300} \quad \text { So } \quad \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{300}}
\end{aligned}
$$

(b) What distributions are good approximations for T and \bar{X} ?

Normal! T is approx $N\left(300 \mu_{x}, \sigma_{x} \sqrt{300}\right)$
\bar{X} is approx $N\left(\mu_{x}, \frac{\sigma_{x}}{\sqrt{300}}\right)$
CENTRAL LIMIT THEOREM (LT):
Let $X_{1}, X_{2}, \ldots, X_{n}$ be rid rvs with mean μ and standard deviation σ. Let $T_{n}=X_{1}+\cdots+X_{n}$ and $\bar{X}_{n}=\frac{T_{n}}{n}$.

Then the distributions of T_{n} and \bar{X}_{n} approach normal distributions as $n \rightarrow \infty$.

- Distribution of T_{n} approaches $N(n \mu, \sigma \sqrt{n})$.
) CONVERGENCE
- Distribution of X_{n} approaches $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. $\}$ IN DISTRIBUTION

2. A farm packs tomatoes in crates. Individual tomatoes have mean weight of 10 ounces and standard deviation of 3 ounces. Estimate the probability that a crate of 40 tomatoes weighs between 380 and 410 ounces.
T_{40} is the weight of 1 crate of 40 tomatoes

T40 is approximately $N(40(10), 3 \sqrt{40})=N(400,18.97)$
The: $\quad P\left(380<T_{40}<410\right) \approx 0.555$

$$
\operatorname{pnorm}(410,400,18.97)-\operatorname{prorm}(380,400,1897)
$$

3. Customers at a popular restaurant are waiting to be served. Waiting times are independent and exponentially distributed with mean $1 / \lambda=10$ minutes.
(a) Use the CLT to approximate the probability that the average wait time of 50 customers is less than 12 minutes.
$n=50 \quad$ aug. wait time: \bar{X}_{50} is approx $N\left(10, \frac{10}{\sqrt{50}}\right)=N(10,1.414)$

$$
P\left(\bar{X}_{50}<12\right) \approx 0.921 \quad \text { prom }(12,10,1.414)
$$

(b) What is the exact probability that the average wait time of the 50 customers is less than 12 minutes?
exact distribution of T_{50} is $\operatorname{Gamma}(\alpha=50, \beta=10)$
or: distribution of \bar{X}_{n} is $\operatorname{Gama}\left(\alpha=50, \beta=\frac{1}{5}\right) \leftarrow$ why? mg f's!

$$
P\left(\bar{X}_{n}<12\right)=P\left(T_{50}<50(12)\right)=P\left(T_{50}<600\right)=0.916
$$

$$
\operatorname{pgamma}\left(600,50, \frac{1}{10}\right)
$$

(WEAK) LAW OF LARGE NUMBERS
If $X_{1}, X_{2}, \ldots, X_{1}$ are iid rvs with mean $\mu<\infty$ and

$$
\begin{array}{r}
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}, \text { then for any } \varepsilon>0, \\
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right| \geq \varepsilon\right)=0 .
\end{array}
$$

InTERPRETATION: The probability that \bar{X}_{n} is for from μ goes to zero as $n \rightarrow \infty$.

STRONG LAW OF LARGE NUMBERS
For \bar{X}_{n} as before,

$$
P\left(\lim _{\infty \rightarrow \infty} \bar{X}_{n}=\mu\right)=1 .
$$

ALMOST SURE CONVERGENCE
4. Suppose you flip a fair coin lots of times. What does the Law of Large Numbers say about the numbers of heads and tails you will observe?
to be continued
5. Suppose that a certain casino game costs $\$ 1$ to play, and the expected winnings per game are $\$ 0.98$. What does the Law of Large Numbers say about your winnings if you play the game lots of times?

