ORDER STATISTICS
Let X_{1}, \ldots, X_{n} be cid continuous rus with pdf $f(x)$ and caff $F(x)$. The ORDER STATISTICS are $Y_{,} \ldots, Y_{n}$, where:

$$
Y_{1}=\min \left(X_{1}, \ldots, X_{n}\right)
$$

Y_{i} is the th smallest among the values of X_{1}, \ldots, X_{n}

$$
Y_{n}=\max \left(X, \ldots, X_{n}\right)
$$

What is the density of Y_{i} ?
For Y_{n} : use the cal method:
Let $G_{n}(y)$ be the $c d f$ of Y_{n}, the max of the X :

$$
\begin{aligned}
G_{n}(y)=P\left(Y_{n} \leqslant y\right) & =P\left(X_{1} \leq y \text { and } X_{2} \leq y \text { and....and } X_{n} \leq y\right) \\
& =P\left(X_{1} \leq y\right) P\left(X_{2} \leq y\right) \cdots P\left(X_{n} \leq y\right) \\
& =F(y) \quad F(y) \cdots F(y) \\
& =[F(y)]^{n}
\end{aligned}
$$

Then the pdf of Y is:

$$
\begin{aligned}
& \text { elf of } Y \text { is: } \\
& \frac{d}{d y} G_{n}(y)=\frac{d}{d y}[F(y)]^{n}=n \cdot F(y)^{n-1} f(y) \text { pdf of } Y_{n}
\end{aligned}
$$

power rule and cham rule

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be ied continuous random variables with $\operatorname{pdf} f(x)$ and $\operatorname{cdf} F(x)$. Let $Y_{1}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Use the following steps to find the pdf of Y_{1}.
(a) Express $P\left(X_{1}>y \cap X_{2}>y \cap \cdots \cap X_{n}>y\right)$ in terms of $F(y)$.

$$
\begin{aligned}
\underbrace{P\left(X_{1}>y \cap X_{2}>y \cap \cdots \wedge X_{n}>y\right)}_{\left.P\left(Y_{1}>y\right)^{\prime}\right)^{P}} & =P\left(X_{1}>y\right) P\left(X_{2}>y\right) \cdots P\left(X_{1}>y\right) \\
& =(1-F(y))(1-F(y)) \cdots(1-F(y)) \\
& =(1-F(y))^{n}
\end{aligned}
$$

(b) Use your answer to part (a) to obtain an expression for $P\left(Y_{1}<y\right)$, the cdf of Y_{1}.

$$
P\left(Y_{1}<y\right)=1-P\left(Y_{1}>y\right)=1-(1-F(y))^{n}
$$

(c) Differentiate to obtain the pdf of Y_{1}.

$$
g_{1}(y)=\frac{d}{d y}\left(1-(1-F(y))^{n}\right)=-n(1-F(y))^{n-1}(-f(y))=n(1-F(y))^{n-1} f(y)
$$

IN GENERAL: The pdf of the th order statistic Y_{i} is:

$$
g_{i}(y)=\frac{n!}{(i-1)!(n-i)!}[F(y)]^{i-1}[1-F(y)]^{n-i} f(y)
$$

2. Let X_{1} and X_{2} be ied $\operatorname{Exp}\left(\frac{1}{10}\right)$. \longrightarrow cd f $F(x)=1-e^{-x / 10}$ for $x>0$, pdf $f(x)=\frac{1}{10} e^{-x / 10}$ for $x>0$.
(a) What is the pdf of $Y_{1}=\min \left(X_{1}, X_{2}\right)$?

$$
\begin{aligned}
& g_{1}(y)=n[1-F(y)]^{n-1} f(y)=2\left[1-\left(1-e^{-y / 10}\right)\right]^{1}\left(\frac{1}{10} e^{-y / 1}\right)=2\left[e^{-y / 0_{0}}\right]\left(\frac{1}{10} e^{-y / 0_{0}}\right) \\
&=\frac{1}{5} e^{-y / 5} \text { for } y>0 \text { exponential pdf with } \\
& \lambda=\frac{1}{5}
\end{aligned}
$$

(b) What is the expected value of Y_{1} ?

$$
E\left(Y_{1}\right)=5
$$

(c) What is the pdf of $Y_{2}=\max \left(X_{1}, X_{2}\right)$? What is $E\left(Y_{2}\right)$?

$$
\begin{aligned}
g_{2}(y) & =n[F(y)]^{n-1} f(y) \\
& =2\left[1-e^{-y / 10}\right]^{\prime}\left(\frac{1}{10} e^{-y / 10}\right) \\
& =\frac{1}{5}\left(e^{-y / 10}-e^{-y / 5}\right) \text { for } y>0 \\
E\left(I_{2}\right) & =\int_{0}^{\infty} y \cdot \frac{1}{5}\left(e^{-y / 10}-e^{-y / 5}\right) d y=15
\end{aligned}
$$

3. Let X_{1}, X_{2}, X_{3} be aid $\operatorname{Exp}\left(\frac{1}{10}\right)$. What is the expected value of the sample median?

$$
\begin{aligned}
& \text { Sample Median! } Y_{2} \\
& \begin{aligned}
g_{2}(y) & =\frac{3!}{1!1!}\left[1-e^{-y / 10}\right]^{1}\left[e^{-y / 10}\right]^{1}\left(\frac{1}{10} e^{-y / 10}\right)=\frac{6}{10}\left[1-e^{-y / 10}\right] e^{-y / 5} \\
& =\frac{3}{5}\left(e^{-y / 5}-e^{-\frac{3 y}{10}}\right) \quad \text { for } \quad y>0 \\
E\left(Y_{2}\right) & =\int_{0}^{\infty} y \cdot \frac{3}{5}\left(e^{-\frac{y}{5}}-e^{-\frac{3 y}{10}}\right) d y=\frac{25}{3}
\end{aligned}
\end{aligned}
$$

4. Let X_{1}, \ldots, X_{8} be aid Unif[0,1]. Sketch the graphs of the pdfs of all eight order statistics on one plot.
```
|n[10]= n=8;
            pdfs = Table[n!/((i-1) ! (n-i) 1) y^(i-1) (1-y)^(n-i), {i, 1, n}]
Out[17]={8(1-y)}\mp@subsup{}{}{7},56(1-y\mp@subsup{)}{}{6}y,168(1-y\mp@subsup{)}{}{5}\mp@subsup{y}{}{2},280(1-y\mp@subsup{)}{}{4}\mp@subsup{y}{}{3},280(1-y\mp@subsup{)}{}{3}\mp@subsup{y}{}{4},168(1-y\mp@subsup{)}{}{2}\mp@subsup{y}{}{5},56(1-y)\mp@subsup{y}{}{6},8\mp@subsup{y}{}{7}
```

$\ln [18]=\operatorname{Plot}[\mathrm{pdfs},\{y, 0,1\}]$

