Practice Problems on Transformations of Random Variables

Math 262

1. Let X have pdf given by $f_{X}(x)=\frac{x+1}{2}$ for $-1 \leq x \leq 1$. Find the density of $Y=X^{2}$.

Note that $0 \leq Y \leq 1$. Fix $y \in[0,1]$. Then:

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})
$$

This probability is equal to the shaded area below:

The shaded region is a trapezoid with area \sqrt{y}, so $F_{Y}(y)=P(-\sqrt{y} \leq X \leq \sqrt{y})=\sqrt{y}$. Differentiating, we find $f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{1}{2 \sqrt{y}}$ for $0 \leq y \leq 1$.
2. Let Y have pdf given by $f_{Y}(y)=2(1-y)$ for $0 \leq y \leq 1$.
(a) Find the density of $U_{1}=2 Y-1$.
$U_{1}=g_{1}(Y)$, where $g_{1}(y)=2 y-1$. Since g_{1} is monotonic, we can apply the Transformation Theorem. The inverse of g_{1} is $h_{1}\left(u_{1}\right)=\frac{u_{1}+1}{2}$ for $-1 \leq u_{1} \leq 1$. The density of U_{1} is then:

$$
f_{U_{1}}\left(u_{1}\right)=f_{Y}\left(h_{1}\left(u_{1}\right)\right)\left|h_{1}^{\prime}\left(u_{1}\right)\right|=2\left(1-\frac{u_{1}+1}{2}\right)\left|\frac{1}{2}\right|=\frac{1-u_{1}}{2} \quad \text { for }-1 \leq u_{1} \leq 1
$$

(b) Find the density of $U_{2}=1-2 Y$.
$U_{2}=g_{2}(Y)$, where $g_{2}(y)=1-2 y$. Since g_{2} is monotonic, we can apply the Transformation Theorem. The inverse of g_{2} is $h_{2}\left(u_{2}\right)=\frac{1-u_{2}}{2}$, for $-1 \leq u_{2} \leq 1$. The density of U_{2} is then:

$$
f_{U_{2}}\left(u_{2}\right)=f_{Y}\left(h_{2}\left(u_{2}\right)\right)\left|h_{2}^{\prime}\left(u_{2}\right)\right|=2\left(1-\frac{1-u_{2}}{2}\right)\left|\frac{1}{2}\right|=\frac{1+u_{2}}{2} \quad \text { for }-1 \leq u_{2} \leq 1
$$

(c) Find the density of $U_{3}=Y^{2}$.
$U_{3}=g_{3}(Y)$, where $g_{3}(y)=y^{2}$, which is monotonic on the interval $0 \leq y \leq 1$, so we can apply the Transformation Theorem. The inverse of g_{3} is $h_{3}\left(u_{3}\right)=\sqrt{u_{3}}$, for $0 \leq u_{3} \leq 1$. The density of U_{3} is then:

$$
f_{U_{3}}\left(u_{3}\right)=f_{Y}\left(h_{3}\left(u_{3}\right)\right)\left|h_{3}^{\prime}\left(u_{3}\right)\right|=2\left(1-\sqrt{u_{3}}\right)\left|\frac{1}{2 \sqrt{u_{3}}}\right|=\frac{1}{\sqrt{u_{3}}}-1 \quad \text { for } 0 \leq u_{3} \leq 1 .
$$

3. Let $X \sim \operatorname{Unif}[0,1]$. Find the density of $U=\sqrt{X}$.

First, $f_{X}(x)=1$ for $0 \leq x \leq 1$. Since $U=g(X)$, where $g(x)=\sqrt{x}$, which is monotonic, we can apply the Transformation Theorem. The inverse of g is $h(u)=u^{2}$ for $0 \leq u \leq 1$. The density of U is then:

$$
f_{U}(u)=f_{X}(h(u))\left|h^{\prime}(u)\right|=1|2 u|=2 u \quad \text { for } 0 \leq u \leq 1 .
$$

4. Two sentries are sent to patrol a road that is 1 mile long. The sentries are sent to points chosen independently and uniformly along the road. Find the probability that the sentries will be less than $\frac{1}{2}$ mile apart when they reach their assigned posts.
Let X_{1} and X_{2} be the posts of the sentries along the road; X_{1} and X_{2} are iid Unif $[0,1]$. Thus, their joint density is $f\left(x_{1}, x_{2}\right)=1$ for $0 \leq x_{1} \leq 1$ and $0 \leq x_{2} \leq 1$.
Let $Y=X_{1}-X_{2}$. We want $P\left(-\frac{1}{2}<Y<\frac{1}{2}\right)$. Note that we don't need the density of Y to answer the question: since the joint density of X_{1}^{2} and X_{2} is constant on the unit square, the probability $P\left(-\frac{1}{2}<Y<\frac{1}{2}\right)$ is equal to the area of the shaded region R in the following figure.

Thus, $P\left(-\frac{1}{2}<Y<\frac{1}{2}\right)=\frac{3}{4}$.
5. The joint distribution for the lifetimes of two different types of components operating in a system is given by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{8} y_{1} e^{-\left(y_{1}+y_{2}\right) / 2} & \text { if } y_{1}>0, y_{2}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the density function for the ratio $U=\frac{Y_{2}}{Y_{1}}$.
Using the (bivariate) distribution function method, first note that U can be any positive number. Fix $u>0$, and note that the set of where $U=\frac{Y_{2}}{Y_{1}}=u$ in the $y_{1} y_{2}$-plane is the line $y_{2}=u y_{1}$.

The region where $U=\frac{Y_{2}}{Y_{1}} \leq u$ is the region in the first quadrant where $y_{2} \leq u y_{1}$, which is the shaded region in the figure above.
Then, $P(U \leq u)=P\left(\frac{Y_{2}}{Y_{1}} \leq u\right)=\int_{0}^{\infty} \int_{0}^{u y_{1}} \frac{1}{8} y_{1} e^{-\left(y_{1}+y_{2}\right) / 2} d y_{2} d y_{1}=\frac{u^{2}+2 u}{(1+u)^{2}}$.
Thus, the density of U is $f_{U}(u)=\frac{d}{d u}\left(\frac{u^{2}+2 u}{(1+u)^{2}}\right)=\frac{2}{(1+u)^{3}}$, for $u>0$.
6. Suppose X and Y are independent exponential rvs with parameter λ. Find the joint density of $V=\frac{X}{Y}$ and $W=X+Y$. Use the joint density to find the marginal distributions.
We will use the bivariate tranformation theorem. Note that the joint density of X and Y is given by $f(x, y)=$ $\lambda^{2} e^{-\lambda(x+y)}$ for $x>0$ and $y>0$.
We must solve for X and Y in terms of V and W. Since $V=\frac{X}{Y}$, it follows that $X=V Y$, and then $W=X+Y=V Y+Y$, which we solve for Y to obtain $Y=\frac{W}{V+1}$. Similarly, we find $X=\frac{V W}{V+1}$. Thus, we have $X=\phi(V, W)$ where $\phi(v, w)=\frac{v w}{v+1}$, and $Y=\psi(V, W)$ where $\psi(v, w)=\frac{w}{v+1}$.
The Jacobian determinant is then:

$$
|M|=\left|\begin{array}{cc}
\frac{\partial \phi}{\partial v} & \frac{\partial \phi}{\partial w} \\
\frac{\partial \psi}{\partial v} & \frac{\partial \psi}{\partial w}
\end{array}\right|=\left|\begin{array}{cc}
\frac{w}{(v+1)^{2}} & \frac{v}{v+1} \\
\frac{-w}{(v+1)^{2}} & \frac{1}{v+1}
\end{array}\right|=\frac{w}{(v+1)^{3}}-\frac{-v w}{(v+1)^{3}}=\frac{w}{(v+1)^{2}} .
$$

Therefore, the joint density of V and W is given by

$$
g(v, w)=f(\phi(v, w), \psi(v, w))|M|=\lambda^{2} e^{-\lambda\left(\frac{v w}{v+1}+\frac{w}{v+1}\right)}\left|\frac{w}{(v+1)^{2}}\right|=\frac{\lambda^{2} w}{(v+1)^{2}} e^{-\lambda w}
$$

for $v>0$ and $w>0$. Integrate to find the marginal densities:

$$
g_{V}(v)=\int_{0}^{\infty} g(v, w) d w=\frac{1}{(1+v)^{2}}
$$

and

$$
g_{W}(w)=\int_{0}^{\infty} g(v, w) d v=\lambda^{2} w e^{-\lambda w}
$$

7. Let X and Y have joint density $f(x, y)$. Let (R, Θ) be the polar coordinates of (X, Y).
(a) Give a general expression for the joint density of R and Θ.

Note that $R=\sqrt{X^{2}+Y^{2}}, \Theta=\arctan \left(\frac{Y}{X}\right), X=R \cos \Theta$, and $Y=R \sin \Theta$.
The Jacobian determinant is then:

$$
|M|=\left|\begin{array}{cc}
\frac{\partial}{\partial r} r \cos \theta & \frac{\partial}{\partial \theta} r \cos \theta \\
\frac{\partial}{\partial r} r \sin \theta & \frac{\partial}{\partial \theta} r \sin \theta
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

The joint density of R and Θ is given by:

$$
g(r, \theta)=f(r \cos \theta, r \sin \theta)|M|=f(r \cos \theta, r \sin \theta) r
$$

(b) Suppose X and Y are independent with $f(x)=2 x$ for $0<x<1$ and $f(y)=2 y$ for $0<y<1$. Use your result to find the probability that (X, Y) lies inside the circle of radius 1 centered at the origin.
The joint density of X and Y is given by $f(x, y)=4 x y$ for $0<x<1$ and $0<y<1$.
By the previous result, the joint density of R and Θ is given by

$$
g(r, \theta)=f(r \cos \theta, r \sin \theta) r=4(r \cos \theta)(r \sin \theta) r=4 r^{3} \cos \theta \sin \theta
$$

The point (X, Y) lies within the unit circle if and only if $R<1$. Since both X and Y are positive, $0<\Theta<\frac{\pi}{2}$, so the probability that $R<1$ is given by

$$
P(R<1)=\int_{0}^{\pi / 2} \int_{0}^{1} 4 r^{3} \cos \theta \sin \theta d r d \theta=\frac{1}{2}
$$

8. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from the uniform distribution on $[0,1]$. Let Y_{1} and Y_{n} be the smallest and largest, respectively, among the X_{i}. Find the pdf for the range $R=Y_{n}-Y_{1}$.

Hint: The joint pdf for Y_{1} and Y_{n} is $g\left(y_{1}, y_{n}\right)=n(n-1)\left(y_{n}-y_{1}\right)^{n-2}$ for $0 \leq y_{1} \leq y_{n} \leq 1$. (See exercise 141 in Chapter 4 of Carlton and Devore.)
Since $0 \leq R \leq 1$, fix $r \in[0,1]$. Then $R=Y_{n}-Y_{1}=r$ along the line $y_{n}=y_{1}+r$ in the $y_{1} y_{n}$-plane. Furthermore, $R \leq r$ in the region below this line, which is the shaded region in the following diagram.

Thus, the cdf of R is:

$$
F_{R}(r)=P(R \leq r)=1-\int_{r}^{1} \int_{0}^{y_{n}-r} n(n-1)\left(y_{n}-y_{1}\right)^{n-2} d y_{1} d y_{n}=(1-n) r^{n}+n r^{n-1} .
$$

Differentiate to find the pdf of R :

$$
f_{R}(r)=\frac{d}{d r} F_{R}(r)=\frac{d}{d r}\left[(1-n) r^{n}+n r^{n-1}\right]=n(n-1)\left(r^{n-2}-r^{n-1}\right) \quad \text { for } 0 \leq r \leq 1
$$

