

What is computer science

Computer science involves working with people to use computers to solve problems.

The

fundamental skill

in computer science is problem solving.

algorithm:

a step-by-step list of instructions for solving a problem

Computers work with numbers, but decimal numbers are not convenient for computers.

Decimal number:
(base ten)

$$
\begin{aligned}
& \frac{8}{\frac{n}{0}} \frac{5}{\frac{0}{0}} \frac{0}{\tilde{0}}=2 \times 10^{2}+8 \times 10^{1}+5 \times 10^{0} \\
& \frac{0}{5} \\
& \frac{0}{c}
\end{aligned}
$$

Binary number: (base two)

$$
\frac{10}{\frac{1}{n}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}} \begin{aligned}
& \frac{1}{0}=4+0+1=5 \text { (decimal) }
\end{aligned}
$$

Converting Binary to Decimal

1. Write place values below each binary digit.
2. Sum the place values below each 1 in the binary number.

Example: $\begin{array}{l}\text { binary number: } \\ \\ \text { place values: }\end{array} \quad 128$	1	1	04	32	16	1	0	1	1
4	2	1							
1									

decimal number: $64+32+8+2+1=107$

Converting Binary to Decimal

1. Write place values below each binary digit.
2. Sum the place values below each 1 in the binary number.

Convert the following binary numbers to decimal:

10101
 101100

decimal: 21
44

Hexadecimal Numbers

Since binary numbers are cumbersome for humans, computer scientists often convert binary to hexadecimal numbers.

Hexadecimal number:
(base sixteen)

$$
\begin{aligned}
& =2 \times 16^{2}+8 \times 16^{1}+5 \times 16^{0} \\
& =2 \times 256+8 \times 16+5 \times 1 \\
& =512+128+5
\end{aligned}
$$

$$
=645 \text { (decimal) }
$$

Hexadecimal Numbers

Hexadecimal (hex) numbers require sixteen digits:

$$
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
$$

To convert from hex to decimal:

1. Write the place value below each hex digit.
2. Multiply each digit by its place value, and add the products.
Example:

hex number:		2	C
place values:		256	16

decimal number: $2 \times 256+12 \times 16+14 \times 1=718$

Hexadecimal Numbers

To convert from hex to decimal:

1. Write the place value below each hex digit.
2. Multiply each digit by its place value, and add the products.

Convert the following hex numbers to decimal:

A 2
 12 B

decimal: 162
299

Converting Decimal to Any Base

1. Divide the decimal number by the new base.
2. The remainder is the next digit to write down (right to left).
3. If the quotient is zero, you are done. If not, go to step 1 and use the quotient as the new number to divide.

Example: convert decimal 27 to binary
done!

decimal 27 = binary $\underline{11011}$

Converting Decimal to Any Base

1. Divide the decimal number by the new base.
2. The remainder is the next digit to write down (right to left).
3. If the quotient is zero, you are done. If not, go to step 1 and use the quotient as the new number to divide.

Your turn:

- Convert decimal 27 to hexadecimal.
- Convert decimal 31 to binary.
- Convert decimal 89 to hexadecimal.

Hex: 1B
Binary: 11111
Hex: 59

http://xkcd.com/953/

