\qquad
Due Monday, February 27, at the beginning of class

1. Each network device has a unique MAC address.
a. How are MAC addresses commonly written? (That is, how many groups what kind of digits, separated by what?)
b. How many distinct MAC addresses are possible?
2. Find the MAC address of your computer or phone. Visit http://www.wikihow.com/Find-the-MAC-Address-of-Your-Computer for instructions for finding the MAC address for different operating systems. Write your MAC address here:
3. The common standard for IP addresses since the 1980s has been IPv4.
c. How are IPv4 addresses commonly written? (That is, how many groups what kind of digits, separated by what?)
a. How many distinct addresses are possible with IPv4? (Give an exact or approximate answer.)
b. There are about 7 billion people on earth. Are there enough IPv4 addresses for everyone?
4. Find the IPv4 address of your computer.
a. Visit https://www.whatismyip.com. What does this site report as the IPv4 address for your computer?
b. Now click IP WHOIS Lookup (on the left side of the page) to see who registered the IP address that you are learning. State a few things that this page tells you about your IP address:
5. Look up an IPv4 address of a remote server. Go to https://whatismyip.com/dns-lookup. Type the URL of your favorite web site into the search box, and click Lookup. Report the host name and the IP address that was found:
a. Host name:
b. IP address:
6. The internet is in transition to a new IP address standard known as IPv6.
d. How are IPv6 addresses commonly written? (That is, how many groups of how many digits, separated by what?)
e. How many distinct addresses are possible with IPv6? (Give an exact or approximate answer.)
f. There are about 7 billion people on earth. If IPv6 addresses were distributed evenly among everyone, about how many IPv6 addresses would each person have?
