Derivative Review

Work with the people at your table to see how much you can remember about derivatives!

1. The **derivative** of a function at a point represents the ______ of the tangent line at that point. That is:

f'(a) = "the _____ of the tangent line to the graph of f(x) at x = a"

- 2. Because of #1, the derivative can be used to understand the graph of a function f(x):
 - (a) If f'(x) > 0, then the graph of f(x) is _____.
 - (b) If f'(x) < 0, then the graph of f(x) is _____
 - (c) If f'(x) = 0, then the graph of f(x) is _____
- 3. What happens at points where the derivative changes sign?
 - (a) If f' changes from positive to negative at x = c, then f has a local _____ at x = c.
 - (b) If f' changes from negative to positive at x = c, then f has a local _____ at x = c.
- 4. The **second derivative** of a function at a point represents the ______ of the graph at that point. That is:

f''(a) = "the _____ of the graph of f(x) at x = a"

- 5. Because of #4, the second derivative can be used to understand the graph of a function f(x):
 - (a) If f''(x) > 0, then the graph of f(x) is _____.
 - (b) If f''(x) < 0, then the graph of f(x) is _____
- 6. A point at which the graph of f(x) changes concavity is called an ______.

A CAUTION: Not every point at which f''(x) = 0 is one of these points!

- 7. Derivatives of specific kinds of functions:
 - (a) Power Rule:

If n is a real number and $f(x) = x^n$, then f'(x) = ______

(b) Trigonometric Functions:

If $f(x) = \sin(x)$, then f'(x) = ______.

If $f(x) = \cos(x)$, then f'(x) =______.

If $f(x) = \tan(x)$, then f'(x) = ______.

(c) Exponential Functions:

If a > 0 and $f(x) = a^x$, then f'(x) = ______.

In particular, if $f(x) = e^x$, then $f'(x) = \underline{\hspace{1cm}}$

(d) Natural Logarithm:

If $f(x) = \ln(x)$, then f'(x) =______.

- 8. Derivative "rules" for combining functions. You may assume that f'(x) and g'(x) both exist.
 - (a) Constant Multiple Rule:

If C is a constant, then $[C \cdot f(x)]' = \underline{\hspace{1cm}}$.

 ${\rm (b)} \ \ \textbf{Function} \ \ \textbf{Sum/Difference} \ \ \textbf{Rule} :$

$$[f(x) + g(x)]' = \underline{\qquad}$$

$$[f(x) - g(x)]' = \underline{\qquad}.$$

(c) Product Rule:

$$[f(x)g(x)]' = \underline{\hspace{1cm}}.$$

(d) Chain Rule: (composition of functions)

$$[f(g(x))]' = \underline{\hspace{1cm}}.$$

(e) Quotient Rule:

$$\left[\frac{f(x)}{g(x)}\right]' = \underline{\hspace{1cm}}.$$

9. Let's take some derivatives! Find f' and write down which method(s) you use for each:

(a)
$$f(x) = x + \sqrt{x}$$

(b)
$$f(x) = 2 + \frac{1}{x} + \frac{1}{x^2}$$

(c)
$$f(x) = \sqrt{x}\cos(x)$$

(d)
$$f(x) = [x^2 + \sin(x)]^4$$

(e)
$$f(t) = e^{5 + \ln t}$$

(f)
$$f(x) = 3\sqrt{x}\cos(x^2) + \pi$$

10. Suppose that $g(x) = x^2 - 3x + 2$ and f(x) is a differentiable function. All you know about f(x)is the following:

$$f(0) = 3$$
 $f'(0) = -1$
 $f(1) = 5$ $f'(1) = 0$
 $f(2) = -2$ $f'(2) = 3$
 $f(3) = 6$ $f'(3) = 1$

$$f(2) = -2$$
 $f(2) = 3$
 $f(3) = 6$ $f'(3) = 1$

If possible:

- (a) Find the derivative of f(x)g(x) at x=1.
- (b) Find the derivative of $\frac{f(x)}{g(x)}$ at x = 0.
- (c) Find the derivative of f(g(x)) at x = 0.
- (d) Find the derivative of $\frac{f(x)+g(x)}{g(x)}$ at x=0.
- 11. Let $f(x) = 2x^3 + 3x^2 36x$.
 - (a) On which intervals is f increasing? Decreasing?
 - (b) For which values of x does f have a local minimum? Local maximum?
 - (c) On which intervals is f concave down? Concave up? Where are the inflection points?
 - (d) Use this information to sketch a graph of f.

12. Find the maximum and minimum values of $f(x) = x^3 - 3x + 1$ on the interval [0,3].