Calculus II - Day 3

- 1. Pollution is removed from a lake on day t at a rate of f(t) kilograms per day.
- The most important word here is RATE.
- (a) **Group chat:** Given the context stated above, what is the meaning of the following statement?

1 Include units in your answer.

$$f(12) = 500$$

(b) **Group chat:** Given the context stated above, what is the meaning of the following statement?

$$\int_{\xi}^{15} f(t) \, dt = 4000$$

♦ What happens when we find the area under the graph when the graph is a rate of change?

1 Include units in your answer.

- **2.** A car is driving east with velocity (in miles per hour) at time t given by v(t).
 - (a) Group chat: What does v(2) = -20 mean? Use words to explain!
 - (b) Suppose the *position* of the car (east of the start) at time t is given by s(t). Use s(t) to describe what is calculated by

$$\int_{t_1}^{t_2} v(t) \, dt.$$

(c) Calculus I recall time: How are s(t) and v(t) related?

♦ Ahhhhhh!

3. Group chat: Why do parts (b) and (c) of #2 indicate that the following is true:

$$\int_a^b F'(t) dt = F(b) - F(a)$$

4. Circle the antiderivative(s) of $f(x) = 3x^2$.

$$\frac{1}{3}x^3$$

$$x^3$$

$$x^3 + 17$$

$$\frac{1}{3}x^3$$
 x^3 $x^3 + 17$ $x^3 + x - 17$ $\frac{3}{2}x$ $x^3 - 2$ $6x$ $-3x^{-3}$ $x^3 + e$

$$\frac{3}{2}a$$

$$x^3 - 2$$

$$-3x^{-3}$$

$$x^3 + e$$

5. Complete the following table.

f(x)	What power of x is this?	$\int f(x) dx$	f(x)	What power of x is this?	$\int f(x) dx$
f(x) = x	1	$\frac{1}{2}x^2 + C$	$f(x) = \frac{1}{x^5}$		
$f(x) = x^2$	2	$\frac{1}{3}x^3 + C$	$f(x) = x^{2/3}$		
$f(x) = x^3$			$f(x) = x^{-1/2}$		
$f(x) = x^{10}$			$f(x) = \sqrt{x}$		
$f(x) = x^{-3}$			$f(x) = \frac{1}{x}$		

6. Find the following antiderivatives:

$$\int \cos(x) dx \qquad \int \sin(x) dx \qquad \int e^x dx \qquad \int 2^x dx \qquad \int e^x + x^2 dx$$

$$\int e^x dx \qquad \int 2^x dx$$

$$\int e^x + x^2 \, dx$$

S Remember, you're undoing the derivative.

7. Use the Fundamental Theorem of Calculus to find the *exact* answers:

$$\int_{1}^{2} e^{x} dx$$

$$\int_{1}^{2} e^{x} dx \qquad \qquad \int_{a}^{b} e^{x} + x^{2} dx$$

♦ We don't need rectangles anymore!

- **8.** What is the area of exactly one "bump" on the graph of $y = \sin x$?
- **9.** Find the following antiderivatives:

$$\int e^{4x} \cdot 4 \, dx$$

$$\int e^{4x} \, dx$$

$$\int e^{4x} \cdot 4 \, dx \qquad \qquad \int e^{4x} \, dx \qquad \qquad \int (\sin x)^7 \cos x \, dx$$