Exam 2 Practice Problems

- 1. Determine whether each of the following statements is always true, sometimes true, or never true. Explain your reasoning.
 - (a) If f(x) is continuous on $[1, \infty)$ and $\lim_{x \to \infty} f(x) = 0$, then $\int_1^{\infty} f(x) dx$ converges.
 - (b) If f' is continuous on $[0,\infty)$ and $\lim_{x\to\infty} f(x)=0$, then $\int_0^\infty f'(x)\,dx=-f(0)$.
 - (c) If $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
 - (d) If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- 2. Evaluate each integral or show that it is divergent:
 - (a) $\int_0^\infty \frac{x}{e^x} dx$
 - (b) $\int_{1}^{2} \frac{dx}{x \ln(x)}$
- **3.** Let $a_n = \frac{\ln(n)}{\sqrt{n}}$ for each positive integer n.
 - (a) Does the sequence $\{a_n\}$ converge or diverge? Explain.
 - (b) Does the series $\sum_{n=1}^{\infty} a_n$ converge or diverge? Explain.
- 4. Determine if the following series converges or not. If it does, then determine the sum.
 - (a) $\sum_{n=0}^{\infty} \left(\frac{\pi}{3}\right)^n$
 - (b) $\sum_{n=0}^{\infty} \frac{2^{n+2}}{3^n}$
 - (c) $\sum_{n=0}^{\infty} \frac{1}{2^n n!}$

- 5. (a) Differentiate the Maclaurin series for $\sin(x)$. Explain how this shows you that $\frac{d}{dx}\sin(x)=\cos(x)$.
 - (b) Differentiate the Maclaurin series for e^x . Explain how this shows you that e^x is its own derivative.
- **6.** For the following, find the Taylor polynomial of degree n centered at a.

(a)
$$\sin(x)$$
 for $a = \frac{\pi}{2}$ and $n = 4$

(b)
$$\sqrt{1+x}$$
 for $a=3$ and $n=2$

7. Find the interval of convergence of the following series:

(a)
$$\sum_{n=0}^{\infty} \frac{n}{b^n} (x-a)^n \text{ where } b > 0$$

(b)
$$\sum_{n=0}^{\infty} n!(x-a)^n$$

- 8. The limit $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$ is tricky to evaluate, but not if you know about Maclaurin series! Use the Maclaurin series for $\cos(x)$ to evaluate the limit.
- **9.** Recall that $\arctan(1) = \frac{\pi}{4}$. Use the Maclaurin series for $\arctan(x)$ to produce a series that converges to π .