Multivariable Functions

1. Sketch the 3D coordinate axes, and label each axis. Then draw the graphs of the following equations.

y = 2

 $x^2 + y^2 = 1$

- **2.** Let $f(x,y) = \sqrt{x^2 y^2}$. Note that this is a function of *two* variables, x and y!
 - (a) What are all x and y values such that f(x,y) = 0? Draw the set of these values in the (x,y)-plane.

(b) What are all x and y values such that f(x, y) is a real number? Draw the set of these values in the (x, y)-plane.

(c) Choose some points (x, y) and compute f(x, y). Where is f(x, y) big? Where is f(x, y) small?

© Everyone at your table can choose different points! Then compare answers.

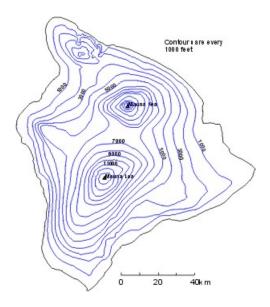
(d) Sketch the graph of f(x, y) on the 3D coordinate axes.

3. (a) What is the distance between (0,0) and (1,1) in 2D?

♦ Is there a right triangle hiding here?

(b) What is the distance between (0,0,0) and (1,1,1) in 3D?

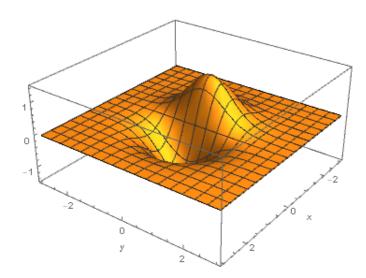
♦ Where is the right triangle?


4. Consider the points P = (1, -2, 1), Q = (5, 1, 1), and R = (1, 1, 1).

(a) Find the distance between the points P and Q.


(b) Find an equation of the sphere with radius 3 centered at P.

(c) Does R lie within the sphere of radius 2 centered at P?


 ${f 5.}$ The image at below is a contour map of the big island of Hawaii. It shows level curves on the surface of the island.

- (a) Where is a (mostly) flat spot on the island?
- (b) Where are some steep places on the island?
- 6. Match the following 3D graphs with their level curves.

7. The graph of $f(x,y) = -3xe^{-x^2-y^2}$ is pictured below.

(a) Sketch the level curves of f.

(b) Suppose you fix x = 0. What does the cross-section of the graph look like for x = 0? This is called the x = 0 trace of the graph.

(c) Now fix y = 0. What does the y = 0 trace look like?