Tangent Planes

1. Group Conjecture: What is the equation for the plane tangent to z = f(x, y) when $(x, y) = (x_0, y_0)$?

€ Look at the equation for a tangent line on the wall. Then fill in the blanks here.

$$z = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} (x - \underline{\hspace{1cm}}) + \underline{\hspace{1cm}} (y - \underline{\hspace{1cm}})$$

2. Find the equation of the plane that is tangent to $f(x,y) = 2x^2 + y^2 - 3y$ at (x,y) = (1,1).

3. Erez: Hey! The tangent plane is really close to the original function for pairs of (x, y) that are "close" to (1, 1).

Jade: Oh, so we can approximate f(1.1, 0.9) without actually using f(x).

Group task: Help Jade approximate f(1.1, 0.9) without actually using f(x).

4. Use a tangent plane to estimate the value of $g(x,y) = x \sin(x+y)$ at (x,y) = (0.5,3).

5. Find the equation of the plane tangent to f(x,y) = 3 - 2x + 5y at (x,y) = (2,3). Simplify as much as possible.

☼ Does the result surprise you?

6. Find the linearization of $f(x,y) = \sqrt{10 - x^2 - 2y^2}$ at (2,1) and use it to approximate f(1.9,1.1).

7. Suppose that your friend claims that the equation of the tangent plane to the graph of $f(x,y) = x^3 - y^2$ at the point (4,5) is

$$z = 39 + 3x^{2}(x - 4) - 2y(y - 5).$$

- (a) Why is this not possibly the equation of a tangent plane?
- (b) What mistake did your friend make?
- (c) What is the correct equation of the tangent plane?
- **8.** Find the linearization of $z = y \ln(x)$ at (1, 4, 0).