Directional Derivatives

1. The wind chill function w(T, v) is on the screen again. As we did last week, focus on the entry corresponding to T = 10 and v = 15. That is, w(10, 15) = -7.

Recall from last week:

- If $\Delta T = 5$, then $\Delta W = 7$. So, an *estimate* for the partial derivative in the T direction is $w_T(15, 20) \approx \frac{7}{5}$.
- If $\Delta v = 5$, then $\Delta W = -2$. So, an *estimate* for the partial derivative in the v direction is $w_v(15, 20) \approx -\frac{2}{5}$.
- (a) What is your best guess for the rate that w changes if $\Delta T = 5$ and $\Delta v = 5$?

South variables change!

(b) What is your best guess for the rate that w changes if $\Delta T = 1$ and $\Delta v = 1$?

☼ Both variables change!

(c) Milo: Hey Jade, $w_T(10, 15)$ is really a rate of change! Jade: It sure is, a rate of change, Milo! That means we can think about it like this:

$$\begin{split} w_T(10,15) &\approx \frac{\Delta w}{\Delta T} = \frac{w(15,15) - w(10,15)}{5} \\ &= \frac{w(15,15) - w(10,15)}{\text{the distance between the points } (T,v) = (15,15) \text{ and } (T,v) = (10,15)} \end{split}$$

Group chat: Why is the previous fraction actually equal to $\frac{7}{5}$?

(d) **Milo:** Could we also talk about a rate of change in the direction where $\Delta T = 5$ and $\Delta v = 5$?

Jade: We sure can! In this case, our fraction becomes:

rate of change =
$$\frac{w(15, 20) - w(10, 15)}{\text{the distance between the points } (T, v) = (15, 20) \text{ and } (T, v) = (10, 15)}$$

Group chat: What is this new fraction equal to?

 \bigcirc Stop and wait for further instructions. While you wait, discuss: Would it make sense to talk about the rate that w changes for other combinations of ΔT and Δv ?

2. What is the rate at which $f(x,y) = 2x^2 + y^2 - 5$ is changing in the direction $\mathbf{u} = \langle 3,4 \rangle$ at the point (x,y) = (1,3)?

3. Milo: WOW! We have a formula for the directional derivative when **u** is the unit vector $\langle a, b \rangle$:

$$D_{\mathbf{u}}f(x,y) = f_x(x,y) \cdot a + f_y(x,y) \cdot b.$$

Jade: Milo, look!! $D_{\mathbf{u}}f(x,y)$ is the dot product of two vectors!

Group chat: Which two vectors is $f_x(x,y) \cdot a + f_y(x,y) \cdot b$ the dot product of?

$$f_x(x,y) \cdot a + f_y(x,y) \cdot b = \langle , \rangle \cdot \langle , \rangle$$

Milo: One of those vectors is **u**. The other vector must be important, so maybe we should give it a name?

4. Jade: Hey, do you remember the formula $\mathbf{v} \cdot \mathbf{u} = |\mathbf{v}| |\mathbf{u}| \cos(\theta)$?

Milo: I sure do! Let's try to apply it to $D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$.

Jade: OK, if we substitute the vectors into the formula, we get

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = |\nabla f(x,y)| |\mathbf{u}| \cos(\theta).$$

What good is that?

Milo: Well, we know $|\mathbf{u}| = 1$ and we know $|\nabla f(x,y)|$ is some number. So, $D_{\mathbf{u}}f(x,y)$ is as large as it could possibly be when $\cos(\theta)$ equals 1.

Group chat: What angle θ makes $D_{\mathbf{u}}f(x,y)$ as large as it could possibly be? What does this mean about the vectors $\nabla f(x,y)$ and \mathbf{u} ?

Group chat: What angle θ makes $D_{\mathbf{u}}f(x,y)$ as $small^*$ as it could possibly be? What does this mean about the vectors $\nabla f(x,y)$ and \mathbf{u} ?

*Negative numbers are, in fact, smaller than 0.

5. Let $f(x,y) = xy + 2x^2 - 3y$. On the graph of f, what is the direction of the steepest slope at the point (2,1)? What is this steepest slope?