3. The wave heights \(h \) in the open sea depend on the speed \(v \) of the wind and the length of time \(t \) that wind has been blowing at that speed (knots). Values of the function \(h = f(v, t) \) are recorded in feet in the following table.

<table>
<thead>
<tr>
<th>Wind speed</th>
<th>Duration (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5 7 8 8 9 9 9</td>
</tr>
<tr>
<td>30</td>
<td>9 13 16 17 18 19 19</td>
</tr>
<tr>
<td>40</td>
<td>14 21 25 28 31 33 33</td>
</tr>
<tr>
<td>50</td>
<td>19 29 36 40 45 48 50</td>
</tr>
<tr>
<td>60</td>
<td>24 37 47 54 62 67 69</td>
</tr>
</tbody>
</table>

(a) Use the table to find a linear approximation to the wave height function when \(v \) is near 40 knots and \(t \) is near 20 hours.

\[
\begin{align*}
\text{linear approximation:} & \quad h(v, t) \approx 1.15(v-40) + 0.45(t-20) + 28 \\
\text{then} & \quad h(40, 20) \approx 1.15(40-40) + 0.45(20-20) + 28 = 33.25
\end{align*}
\]

(b) Using the linear approximation you just found, estimate the wave heights when the wind has been blowing for 24 hours at 43 knots.

\[
\begin{align*}
\text{estimated wave height} & \quad h(43, 24) \approx 1.15(43-40) + 0.45(24-20) + 28 \\
& \quad \approx 1.15(3) + 0.45(4) + 28 = 33.25
\end{align*}
\]

4. Let \(f(x, y) = \sqrt{y + \cos^2(x)} \). Use a linearization to approximate \(f(0.2, 0.1) \).

\[
\begin{align*}
\frac{df}{dx}(x,y) & = \frac{1}{2}(y + \cos^2(x))^{-1/2}(2\sin(x)(-\sin(x))) \\
\frac{df}{dy}(x,y) & = \frac{1}{2}(y + \cos^2(x))^{-1/2}
\end{align*}
\]

We will find the linearization at \((0,0)\) since we can easily compute the following:

\[
\begin{align*}
\frac{df}{dx}(0,0) & = (0 + \cos(0))^{1/2} = 1 \\
\frac{df}{dy}(0,0) & = \frac{1}{2}(0 + \cos^2(0))^{-1/2} = 0 \\
\frac{df}{dt}(0,0) & = \frac{1}{2}(0 + \cos^2(0))^{-1/2} = \frac{1}{2}
\end{align*}
\]

Tangent Plane:
\[
\begin{align*}
z - 0 & = 0(x-0) + \frac{1}{2}(y-0) \\
& = \frac{1}{2} y + 1
\end{align*}
\]

Thus, near \((0,0)\):
\(f(x,y) \approx \frac{1}{2} y + 1, \), so
\(f(0.2, 0.1) \approx \frac{1}{2}(0.1) + 1 = 1.05 \)
Directional Derivatives
Section 14.6

If f is differentiable, then the **directional derivative** in the direction of the unit vector $\mathbf{u} = \langle a, b \rangle$ is denoted $D_{\mathbf{u}}f(x, y)$ and is defined by:

$$D_{\mathbf{u}}f(x, y) = a f_x(x, y) + b f_y(x, y)$$

1. Find the directional derivatives of $f(x, y) = -x^2 + 2y^2$ at the point (1, 2):

 (a) in the direction of $\mathbf{v} = \langle 2, -4 \rangle$.

 Unit vector in the direction of \mathbf{v}:
 $$\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle 2, -4 \rangle}{\sqrt{2^2 + (-4)^2}} = \frac{\langle 2, -4 \rangle}{\sqrt{20}} = \frac{\langle 2, -4 \rangle}{2 \sqrt{5}}$$

 Directional Derivative:
 $$D_{\hat{\mathbf{v}}}f(1, 2) = \frac{2}{\sqrt{5}} f_x(1, 2) + \frac{-4}{\sqrt{5}} f_y(1, 2) = \frac{2}{\sqrt{5}} (-2) + \frac{-4}{\sqrt{5}} 8 = \frac{-18}{\sqrt{5}}$$

 (b) in the direction of $\theta = \frac{\pi}{4}$.

 Unit vector: $\hat{\mathbf{u}} = \frac{\langle 1, 1 \rangle}{\sqrt{2}} = \frac{\langle 1, 1 \rangle}{\sqrt{2}}$

 Directional derivative:
 $$D_{\hat{\mathbf{u}}}f(1, 2) = \frac{\sqrt{2}}{2} f_x(1, 2) + \frac{\sqrt{2}}{2} f_y(1, 2) = \frac{\sqrt{2}}{2} (-2) + \frac{\sqrt{2}}{2} 8 = \frac{6}{\sqrt{2}}$$

2. Find the direction(s) in which the directional derivative of $f(x, y) = e^{-xy}$ at the point (0, 2) has value 1.

 Directional derivatives:
 $$f_x(x, y) = -y e^{-xy} \quad f_y(x, y) = -x e^{-xy}$$
 $$f_x(0, 2) = -2 e^0 = -2 \quad f_y(0, 2) = -0 e^0 = 0$$

 If $\mathbf{u} = \langle a, b \rangle$ is a unit vector, then
 $$D_{\mathbf{u}}f(0, 2) = a f_x(0, 2) + b f_y(0, 2) = a (-2) + b (0) = -2a$$

 Want: $-2a = 1$, so $a = \frac{-1}{2}$

 Unit vector: $a^2 + b^2 = 1$, so $\left(\frac{-1}{2}\right)^2 + b^2 = 1$, or $b = \frac{3}{4}$ and $b = \pm \frac{3}{4}$.
The gradient of $f(x, y)$ is a vector, denoted ∇f, and defined by:

\[\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \]

The maximum value of the directional derivative D_uf is $|\nabla f|$, and it occurs when u has the same direction as the gradient vector ∇f.

3. Find the gradient of $f(x, y) = x^2 + x \sin(2y)$.

4. What is the direction of the maximum rate of change of $f(x, y) = x^2 + x \sin(2y)$ at the point $(2, 0)$? What is this rate of change?

5. Let $f(x, y)$ have continuous partial derivatives and consider the points $A(1, 2)$, $B(4, 2)$, $C(1, 5)$, and $D(5, 8)$. The directional derivative of f at A in the direction of vector \overrightarrow{AB} is 3, and the directional derivative at A in the direction of \overrightarrow{AC} is 15. Find the directional derivative of f at A in the direction of vector \overrightarrow{AD}.

6. Explain why the directional derivative is really a dot product involving the gradient vector.