$\underset{\text{MATH 220}}{\textbf{Linear Algebra}} - \textbf{Day 35}$ Here are sets of "vectors" along with definitions for "addition" and "scalar multiplication." For each, give an example of a vector. Then decide whether the set is closed under addition and scalar multiplication. Is there a "zero vector"? Do the other properties hold? If not, which fail? Finally, decide if each is a vector space. | $V, +, $ and \cdot | Vector example | $\begin{array}{c} \textbf{Closed} \\ \textbf{under} \ +? \end{array}$ | Zero
vector 0? | Closed under ·? | Other properties? | Vector space? | |---|---|---|---|-----------------|-------------------|---------------| | \mathbb{R}^3 with usual $+$ and \cdot | $\begin{bmatrix} 4 \\ -13 \\ 2.5 \end{bmatrix}$ | yes | $0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ | yes | yes | yes | | \mathbb{R}^4 with usual $+$ and \cdot | | | | | | | | \mathbf{P}^2 : polynomials
of degree ≤ 2
(variable is x),
with polynomial
+ and scalar | $4x^2 - 13x + 2.5$ | yes | 0 is the number 0 | yes | yes | yes | | all $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2
where $x, y \ge 0$,
with same $+$ and \cdot as \mathbb{R}^2 | | | | | | | | $\mathbb{R}^{2\times 2}$: all 2×2 matrices, with usual matrix + and scalar · | | | | | | | | $\mathbb{R}^{3\times 2}$: all 3×2 matrices, with usual matrix + and scalar · | | | | | | | | all polynomials of degree exactly 2 (variable is x), with polynomial + and scalar · | | | | | | | | V , +, and \cdot | Vector example | Closed under +? | Zero
vector 0? | Closed under ·? | Other properties? | Vector space? | |--|----------------|-----------------|-------------------|-----------------|-------------------|---------------| | upper-triangular 2×2 matrices with matrix $+$ and scalar \cdot | | | | | | | | \mathbb{R}^+ : all positive real numbers, " $\mathbf{r} + \mathbf{s}$ " is done by taking $\mathbf{r}\mathbf{s}$, " $c \cdot \mathbf{r}$ " is done by taking \mathbf{r}^c | | | | | | | | \mathbf{P}^n : polynomials of degree $\leq n$ (variable is x), with polynomial $+$ and scalar \cdot | | | | | | | | $\mathbb{R}^{m \times n}$: all $m \times n$ matrices, with usual matrix $+$ and scalar \cdot | | | | | | | | \mathbf{P} : all polynomials (variable is x) with polynomial $+$ and scalar \cdot | | | | | | | | \mathcal{C} : all continuous functions (real valued functions $f(x)$), with ordinary function $+$ and scalar \cdot | | | | | | |