
Sample Project Report
MATH 242 — Modern Computational Mathematics
Prof. Wright

Resource Acknowledgement: While working on this project, I referred to the textbook
and to the Mathematica documentation. I briefly discussed my problem-solving approach
with the professor in office hours.

Problem Statement
I will use Madhava’s formula to compute approximation of π:

π = 4 1 - 1
3
+ 1

5
- 1

7
+ 1

9
- 1

11
+…

This formula can be obtained from the Maclaurin series for the arctangent function. It
converges very slowly to π, meaning that lots of terms of the sum are required to obtain
even a few digits of π. In class, we found that the first n terms of the sum produce about
log10(n) correct digits of π. In this project, I will determine exactly how many terms of the
sum are required to obtain several correct digits of π. I will explore the sequence
n1, n2, n3, ... where nk is the minimum number of terms required to obtain k correct digits
of π past the decimal point.

Implementation

Computing partial sums of Madhava’s series

First, I use a loop with a Print statement to generate the terms of the sum. This is just a
warm-up that helps me write the following code correctly.

In[1]:=

Do[Print[(-1)^i/(2 i + 1)], {i, 0, 4}]

1

-
1

3
1

5

-
1

7
1

9

Seeing that the terms above are correct, I add them up and multiply by 4. I put this code
in a module that accepts the number of terms n as an argument and returns the sum.

In[2]:=

computeSum[n_] := Module[{sum = 0},

Do[sum += (-1)^i/(2 i+ 1), {i, 0, n - 1}];

4* sum

]

Note that computeSum returns a fraction, which we can convert to a decimal number:

In[3]:=

computeSum[100]

Out[3]=

8 252079759413 970386664 454687621174 435983101 115012912631 997769614 579677862 845

786 070667088/

2 635106 162757236 442495826303 084698495 565581115509 040892412 867358728390 766

099 042109898 375

In[4]:=

N[computeSum[1000], 50]

Out[4]=

3.1405926538397929259635965028693959704513893307797

The previous output is close to π, so it appears that our module computeSum is
working as expected.

Counting correct digits

To find the number of correct digits past the decimal point, I use another module. This
module also requires a parameter n that specifies the number of terms of the sum to
use:

2 sample project report.nb

In[12]:=

correctDigits[n_] := Module[

(* local variables within this module *)

{approx, exact,

approxDigit = 0, exactDigit = 0,

count = 0},

(* compute the partial-sum approximation with n terms;

subtract 3 since we are interested in digits past the decimal point *)

approx = computeSum[n]- 3;

(* store the "exact" digits of pi past the decimal point *)

exact = Pi- 3;

(* use a loop to count correct digits *)

While[approxDigit  exactDigit,

(*multiply by 10 to shift the next digit to the left of the decimal point *)

approx = 10* approx;

exact = 10* exact;

(* use the Floor function to peel off the next digit *)

approxDigit = Floor[approx];

exactDigit = Floor[exact];

(* if the digits match, then increment the counter *)

If[approxDigit  exactDigit,

count += 1];

(* print the current values for testing/debugging *)

(*Print[{"approx digit",approxDigit,"exact digit",exactDigit,"count",count}];*)

(* subtract the current digit so that we're ready to examine the next digit *)

approx = approx- approxDigit;

exact = exact- exactDigit;

];

(* return the number of correct digits *)

count

]

I will check to make sure that correctDigits module works, using a Print statement to
see the values of internal variables. The sum with 800 terms has two correct digits after
the decimal:

In[7]:=

computeSum[800] // N

Out[7]=

3.14034

sample project report.nb 3

In[8]:=

correctDigits[800]

{approx digit, 1, exact digit, 1, count, 1}

{approx digit, 4, exact digit, 4, count, 2}

{approx digit, 0, exact digit, 1, count, 2}

Out[8]=

2

The sum with 5000 terms has three correct digits after the decimal:

In[9]:=

computeSum[5000] // N

Out[9]=

3.14139

In[10]:=

correctDigits[5000]

{approx digit, 1, exact digit, 1, count, 1}

{approx digit, 4, exact digit, 4, count, 2}

{approx digit, 1, exact digit, 1, count, 3}

{approx digit, 3, exact digit, 5, count, 3}

Out[10]=

3

It looks like the code is working properly, so now we will comment out the Print
statement in the module.

How many terms for each correct digit?
Now I will plot of the number of correct digits for various values of n. I will let n take
values from 10 to 800, with a step size of 10.

In[13]:=

nDigits = Table[{n, correctDigits[n]}, {n, 10, 800, 10}]

Out[13]=

{{10, 0}, {20, 0}, {30, 1}, {40, 1}, {50, 1}, {60, 1}, {70, 1}, {80, 1}, {90, 1}, {100, 1},

{110, 1}, {120, 1}, {130, 1}, {140, 1}, {150, 1}, {160, 1}, {170, 1}, {180, 1}, {190, 1},

{200, 1}, {210, 1}, {220, 1}, {230, 1}, {240, 1}, {250, 1}, {260, 1}, {270, 1}, {280, 1},

{290, 1}, {300, 1}, {310, 1}, {320, 1}, {330, 1}, {340, 1}, {350, 1}, {360, 1}, {370, 1},

{380, 1}, {390, 1}, {400, 1}, {410, 1}, {420, 1}, {430, 1}, {440, 1}, {450, 1}, {460, 1},

{470, 1}, {480, 1}, {490, 1}, {500, 1}, {510, 1}, {520, 1}, {530, 1}, {540, 1}, {550, 1},

{560, 1}, {570, 1}, {580, 1}, {590, 1}, {600, 1}, {610, 1}, {620, 1}, {630, 2}, {640, 2},

{650, 2}, {660, 2}, {670, 2}, {680, 2}, {690, 2}, {700, 2}, {710, 2}, {720, 2},

{730, 2}, {740, 2}, {750, 2}, {760, 2}, {770, 2}, {780, 2}, {790, 2}, {800, 2}}

4 sample project report.nb

In[14]:=

ListPlot[nDigits, AxesLabel  {"terms in sum", "correct digits"}]

Out[14]=

200 400 600 800
terms in sum

0.5

1.0

1.5

2.0

correct digits

We see the first correct digit is obtained with between 20 and 30 terms, and the second
correct digit requires between 620 and 630 terms. Let’s determine these value more
precisely.

First correct digit

I will find the numbers of correct digits obtained by 20 to 30 terms.

In[15]:=

nDigits = Table[{n, correctDigits[n]}, {n, 20, 30}]

Out[15]=

{{20, 0}, {21, 1}, {22, 0}, {23, 1}, {24, 0}, {25, 1}, {26, 1}, {27, 1}, {28, 1}, {29, 1}, {30, 1}}

Fascinating! We see that 21 terms give the first correct digit past the decimal point, but
then this digit is incorrect with 22 terms. This must be due to the fact that Madhava’s
series is an alternating series, with alternately positive and negative terms. With 25 or
more terms, this digit seems to be consistently correct. Let’s collect a bit more data to
see if the first digit is ever correct with less than 20 terms.

In[16]:=

nDigits = Table[{n, correctDigits[n]}, {n, 10, 40}]

Out[16]=

{{10, 0}, {11, 0}, {12, 0}, {13, 0}, {14, 0}, {15, 0}, {16, 0}, {17, 0}, {18, 0}, {19, 1}, {20, 0},

{21, 1}, {22, 0}, {23, 1}, {24, 0}, {25, 1}, {26, 1}, {27, 1}, {28, 1}, {29, 1}, {30, 1},

{31, 1}, {32, 1}, {33, 1}, {34, 1}, {35, 1}, {36, 1}, {37, 1}, {38, 1}, {39, 1}, {40, 1}}

Now we see that the first decimal digit is correct with 19 terms, but it’s not consistently
correct until we have 25 or more terms. Since I think it’s important for the digits to be
consistently correct, I will set n1 = 25. That is, it appears that n1 = 25 is the smallest
integer such that Madhava’s series gives one correct digit of π (past the decimal point)
with n ≥ n1 terms.

sample project report.nb 5

Second correct digit

I know that about 620 terms will be required to obtain the second digit of π. Since
additional terms may be some alternating correct/incorrect, we will find the number of
correct digits for n terms, for n in an interval around 620.

In[17]:=

nDigits = Table[{n, correctDigits[n]}, {n, 600, 650}]

Out[17]=

{{600, 1}, {601, 2}, {602, 1}, {603, 2}, {604, 1}, {605, 2}, {606, 1}, {607, 2}, {608, 1},

{609, 2}, {610, 1}, {611, 2}, {612, 1}, {613, 2}, {614, 1}, {615, 2}, {616, 1}, {617, 2},

{618, 1}, {619, 2}, {620, 1}, {621, 2}, {622, 1}, {623, 2}, {624, 1}, {625, 2}, {626, 1},

{627, 2}, {628, 2}, {629, 2}, {630, 2}, {631, 2}, {632, 2}, {633, 2}, {634, 2},

{635, 2}, {636, 2}, {637, 2}, {638, 2}, {639, 2}, {640, 2}, {641, 2}, {642, 2},

{643, 2}, {644, 2}, {645, 2}, {646, 2}, {647, 2}, {648, 2}, {649, 2}, {650, 2}}

With a bit of trial and error, it seems that we get two correct digits of π when adding up
627 or more terms of Madhava’s series. So let n2 = 627.

Third correct digit

I am guessing that the third correct digit will require a few thousand terms. Here is an
initial calculation to determine this:

6 sample project report.nb

In[18]:=

nDigits = Table[{n, correctDigits[n]}, {n, 1000, 5000, 100}]

ListPlot[nDigits, AxesLabel  {"terms in sum", "correct digits"}]

Out[18]=

{{1000, 2}, {1100, 2}, {1200, 2}, {1300, 2}, {1400, 2}, {1500, 2},

{1600, 2}, {1700, 3}, {1800, 3}, {1900, 3}, {2000, 3}, {2100, 3}, {2200, 3},

{2300, 3}, {2400, 3}, {2500, 3}, {2600, 3}, {2700, 3}, {2800, 3}, {2900, 3},

{3000, 3}, {3100, 3}, {3200, 3}, {3300, 3}, {3400, 3}, {3500, 3}, {3600, 3},

{3700, 3}, {3800, 3}, {3900, 3}, {4000, 3}, {4100, 3}, {4200, 3}, {4300, 3},

{4400, 3}, {4500, 3}, {4600, 3}, {4700, 3}, {4800, 3}, {4900, 3}, {5000, 3}}

Out[19]=

2000 3000 4000 5000
terms in sum

2.0

2.2

2.4

2.6

2.8

3.0

correct digits

It turns out that the third correct digit is obtained somewhere between 1600 and 1700
terms. Let’s see how many correct digits are obtained for each number of terms in this
range.

sample project report.nb 7

In[20]:=

nDigits = Table[{n, correctDigits[n]}, {n, 1600, 1700}]

ListPlot[nDigits, AxesLabel  {"terms in sum", "correct digits"}]

Out[20]=

{{1600, 2}, {1601, 2}, {1602, 2}, {1603, 2}, {1604, 2}, {1605, 2}, {1606, 2}, {1607, 2},

{1608, 2}, {1609, 2}, {1610, 2}, {1611, 2}, {1612, 2}, {1613, 2}, {1614, 2}, {1615, 2},

{1616, 2}, {1617, 2}, {1618, 2}, {1619, 2}, {1620, 2}, {1621, 2}, {1622, 2}, {1623, 2},

{1624, 2}, {1625, 2}, {1626, 2}, {1627, 2}, {1628, 2}, {1629, 2}, {1630, 2}, {1631, 2},

{1632, 2}, {1633, 2}, {1634, 2}, {1635, 2}, {1636, 2}, {1637, 2}, {1638, 2}, {1639, 2},

{1640, 2}, {1641, 2}, {1642, 2}, {1643, 2}, {1644, 2}, {1645, 2}, {1646, 2}, {1647, 2},

{1648, 2}, {1649, 2}, {1650, 2}, {1651, 2}, {1652, 2}, {1653, 2}, {1654, 2}, {1655, 2},

{1656, 2}, {1657, 2}, {1658, 2}, {1659, 2}, {1660, 2}, {1661, 2}, {1662, 2}, {1663, 2},

{1664, 2}, {1665, 2}, {1666, 2}, {1667, 2}, {1668, 2}, {1669, 2}, {1670, 2}, {1671, 2},

{1672, 2}, {1673, 2}, {1674, 2}, {1675, 2}, {1676, 2}, {1677, 2}, {1678, 2}, {1679, 2},

{1680, 2}, {1681, 2}, {1682, 2}, {1683, 2}, {1684, 2}, {1685, 2}, {1686, 2},

{1687, 2}, {1688, 3}, {1689, 2}, {1690, 3}, {1691, 2}, {1692, 3}, {1693, 2},

{1694, 3}, {1695, 2}, {1696, 3}, {1697, 2}, {1698, 3}, {1699, 2}, {1700, 3}}

Out[21]=

1620 1640 1660 1680 1700
terms in sum

2.0

2.2

2.4

2.6

2.8

3.0

correct digits

We see that the third correct digit first appears for 1688 terms, but then this digit is
alternately correct and incorrect as we add successive terms. Let’s explore what
happens above 1700 terms. It seems we might have to go rather high, so we’ll focus on
a plot first.

8 sample project report.nb

In[22]:=

nDigits = Table[{n, correctDigits[n]}, {n, 1700, 3000}];

ListPlot[nDigits, AxesLabel  {"terms in sum", "correct digits"}]

Out[23]=

1800 2000 2200 2400 2600 2800 3000
terms in sum

2.0

2.2

2.4

2.6

2.8

3.0

correct digits

The last n that gives only two correct digits seems to be 2453, so let’s zoom in near that
value.

sample project report.nb 9

In[24]:=

nDigits = Table[{n, correctDigits[n]}, {n, 2400, 2500}]

ListPlot[nDigits, AxesLabel  {"terms in sum", "correct digits"}]

Out[24]=

{{2400, 3}, {2401, 2}, {2402, 3}, {2403, 2}, {2404, 3}, {2405, 2}, {2406, 3}, {2407, 2},

{2408, 3}, {2409, 2}, {2410, 3}, {2411, 2}, {2412, 3}, {2413, 2}, {2414, 3}, {2415, 2},

{2416, 3}, {2417, 2}, {2418, 3}, {2419, 2}, {2420, 3}, {2421, 2}, {2422, 3}, {2423, 2},

{2424, 3}, {2425, 2}, {2426, 3}, {2427, 2}, {2428, 3}, {2429, 2}, {2430, 3}, {2431, 2},

{2432, 3}, {2433, 2}, {2434, 3}, {2435, 2}, {2436, 3}, {2437, 2}, {2438, 3}, {2439, 2},

{2440, 3}, {2441, 2}, {2442, 3}, {2443, 2}, {2444, 3}, {2445, 2}, {2446, 3}, {2447, 2},

{2448, 3}, {2449, 2}, {2450, 3}, {2451, 2}, {2452, 3}, {2453, 2}, {2454, 3}, {2455, 3},

{2456, 3}, {2457, 3}, {2458, 3}, {2459, 3}, {2460, 3}, {2461, 3}, {2462, 3}, {2463, 3},

{2464, 3}, {2465, 3}, {2466, 3}, {2467, 3}, {2468, 3}, {2469, 3}, {2470, 3}, {2471, 3},

{2472, 3}, {2473, 3}, {2474, 3}, {2475, 3}, {2476, 3}, {2477, 3}, {2478, 3}, {2479, 3},

{2480, 3}, {2481, 3}, {2482, 3}, {2483, 3}, {2484, 3}, {2485, 3}, {2486, 3},

{2487, 3}, {2488, 3}, {2489, 3}, {2490, 3}, {2491, 3}, {2492, 3}, {2493, 3},

{2494, 3}, {2495, 3}, {2496, 3}, {2497, 3}, {2498, 3}, {2499, 3}, {2500, 3}}

Out[25]=

2420 2440 2460 2480 2500
terms in sum

2.0

2.2

2.4

2.6

2.8

3.0

correct digits

It looks like we consistently get three correct digits for n ≥ 2454, so we have n3 = 2454.

Discussion

Conclusions and Conjectures

As shown in the computations, plots, and discussion above, we found n1 = 25, n2 = 627,
and n3 = 2454. That is, when n ≥ nk, the sum of the first n terms of Madhava series
produces at least k correct digits of π past the decimal point. We know from class that
the Madhava series requires about ten times as many terms to produce each additional
correct digit of π. Thus, it makes sense that n2 ≥ 10 n1 and n3 ≈ 100 n1. I would guess that
n4 is about 25,000, but it could be substantially larger than this.

10 sample project report.nb

Limitations and Extensions

My method of running computeSum[n] for various value of n is not a great way of
figuring out how many terms are required to obtain a desired number of digits of π. As n
gets larger, it gets more difficult to figure out the next terms in the sequence. I could
write more efficient code that would better automate this search. Perhaps this could be
also studied theoretically (rather than computationally) using results about rates of
convergence of infinite series.

I am curious about the alternating behavior that I notice near each sequence value nk.
Specifically, I would like to better understand why there is a range of n values where the
number of correct digits of π alternates between two consecutive integers before
stabilizing at the larger integer. I suspect this is because Madhava’s series is an
alternating series, but I would like to look into this further.

As another extension for future work, I would like to compare the Madhava series with
other methods of computing digits of π. I would like to find methods that compute
digits of π much more quickly than the Madhava series formula.

sample project report.nb 11

