This is a sample project report for MATH 242. Take note of the style, organization, level of detail, and explanations
presented below. Pay special attention to the items highlighted by purple comments and arrows.

Sample Project Report

Acknowledge resources you
. . used, people you talked with,
MATH 242 — Modern Computational Mathematics / and ideas that are not your own.

Notebook is Prof. Wright
organized with

a 'f':'er ;eCﬁt?“' Resource Acknowledgement: While working on this project, | referred to the textbook
and subsection
headings. and to the Mathematica documentation. | briefly discussed my problem-solving approach

with the professor in office hours.

Problem Statement

Includean —>5 | will use Madhava’s formula to compute approximation of 7.

introduction

that _ 1,1 1.1 1

summarizes n_4(l_§+§_7+9 11+"')

the problem

and states This formula can be obtained from the Maclaurin series for the arctangent function. It
::ia: }c’;’: will converges very slowly to 71, meaning that lots of terms of the sum are required to obtain
project. even a few digits of 7t. In class, we found that the first n terms of the sum produce about

log,,(n) correct digits of 7. In this project, | will determine exactly how many terms of the
sum are required to obtain several correct digits of rt. | will explore the sequence

ni, Ny, N3, ... where ny is the minimum number of terms required to obtain k correct digits
of rrpast the decimal point.

Implementation

Computing partial sums of Madhava’s series

First, | use a loop with a Print statement to generate the terms of the sum. This is just a
warm-up that helps me write the following code correctly.

In[1]:=
Do[Print[(=1)Ai/ (2i+1) 1,{i,0,4}]

2 | sample project report.nb

Use text cells to explain
5 what you will do in your

1 code and what you
observe from your output.

1

9
Seeing that the terms above are correct, | add them up and multiply by 4. | put this code
in a module that accepts the number of terms n as an argumgnt and returns the sum.

In[2]:=
computeSum[n_1] := Module[{sum =0},
Do[sum 4= (=1)Ai/ (2i+1),{i,0,n=-1}];
4 % sum
1
Note that computeSum returns a fraction, which we can convert to a decimal number:
In[3]:=
computeSum [100]
Out[3]=
8252079759413970386664454687621174435983101115012912631997769614579677862845".
786070667088 /
2635106162757236442495826303084698495565581115509040892412867358728390766".
099042109898375
In[4]:=

N[computeSum[1000],50]

Out[4]=
3.1405926538397929259635965028693959704513893307797

The previous output is close to 11, so it appears that our module computeSum is
working as expected.

Counting correct digits

To find the number of correct digits past the decimal point, | use another module. This
module also requires a parameter n that specifies the number of terms of the sum to
use:

sample project report.nb | 3

In[12]:=
correctDigits[n_] := Module [

(= local variables within this module)
{approx, exact,
approxDigit = 0, exactDigit = 0,
count=0},

Use comments

within larger (* compute the partial-sum approximation with n terms;
blocks of code to

explain what your
code is doing. approx = computeSum|[n] - 3;

subtract 3 since we are interested in digits past the decimal point %)

(* store the "exact" digits of pi past the decimal point *)

exact = Pi-3;

(* use a loop to count correct digits =)
While [approxDigit == exactDigit,
(* multiply by 10 to shift the next digit to the left of the decimal point %)
approx = 10 % approx;
exact = 10 » exact;
(* use the Floor function to peel off the next digit «)
approxDigit = Floor [approx];
exactDigit = Floor [exact];
(* if the digits match, then increment the counter «)
If [approxDigit == exactDigit,
count +=17;
(* print the current values for testing / debugging *)
(*Print[{"approx digit",approxDigit,"exact digit",exactDigit,"count",count}];)
(* subtract the current digit so that we're ready to examine the next digit =)
approx = approx — approxDigit;
exact = exact — exactDigit;

15

(* return the number of correct digits)

count

I will check to make sure that correctDigits module works, using a Print statement to
see the values of internal variables. The sum with 800 terms has two correct digits after
the decimal: i

In[7]:=]
computeSum[800] // N

out[7]=
3.14034)

4 | sample project report.nb

In[8]:=
correctDigits[800]

{approx digit, 1, exact digit, 1, count, 1}
{approx digit, 4, exact digit, 4, count, 2}
{approx digit, 0, exact digit, 1, count, 2}

Out[8]=

2

The sum with 5000 terms has

In[9]:=

computeSum|[5000] // N
Out[9]=

3.14139
In[10]:=

correctDigits [5000]
{approx digit, 1, exact digit, 1, count, 1}
{approx digit, 4, exact digit, 4, count, 2}
{approx digit, 1, exact digit, 1, count, 3}
{approx digit, 3, exact digit, 5, count, 3}

Out[10]=
3

ree correct digits after the decimal:

Use printed output to demonstrate that your code
works as expected. Once you are sure your code
works, you may comment out Print statements
within your module to avoid printing hundreds of
lines of output.

It looks like the code is working properly, so now we will comment out the Print

statement in the module.

How many terms for each correct digit?

Now | will plot of the number of correct digits for various values of n. | will let n take

values from 10 to 800, with a step size of 10.

In[13]:=

nDigits = Table[{n, correctDigits[n] }, {n, 10,800,10}]

Out[13]=

{{10,0}, {20,0}, {30,1}, {40,1}, {50,1}, {60,1}, {70,1}, {80,1}, {90,1}, {100,1},
{110,1}, {120,1}, {130, 1}, {140,1}, {150,1}, {160,1}, {170,1}, {180,1}, {190,1},
{200,1}, {210,1}, {220,1}, {230,1}, {240,1}, {250,1}, {260,1}, {270,1}, {280,1},
{290,1}, {300,1}, {310,1}, {320,1}, {330,1}, {340,1}, {350,1}, {360,1}, {370,1},
{380,1}, {390,1}, {400,1}, {410,1}, {420,1}, {430,1}, {440,1}, {450,1}, {460,1},
{470,1}, {480,1}, {490,1}, {500,1}, {510,1}, {520,1}, {530,1}, {540,1}, {550,1},
{560,1}, {570,1}, {580,1}, {590,1}, {600,1}, {610,1}, {620,1}, {630,2}, {640,2},
{650,2}, {660,2}, {670,2}, {680,2}, {690,2}, {700,2}, {710,2}, {720,2},
{730,2}, {740,2}, {750, 2}, {760,2}, {770,2}, {780,2}, {790,2}, {800,2}}

sample project report.nb | 5

In[14]:=
ListPlot [nDigits, AxesLabel » {"terms in sum", "correct digits"}]
Out[14]=
correct digits
] 20F ecc0cosceccoceccos
Use plots to
display
numerical data 15

as appropriate.
Make sure your
plots have
proper labels.

—t————— L= terms in sum
200 400 600 800

We see the first correct digit is obtained with between 20 and 30 terms, and the second
correct digit requires between 620 and 630 terms. Let’s determine these value more
precisely.

First correct digit

I will find the numbers of correct digits obtained by 20 to 30 terms.

In[15]:=
nDigits = Table[{n, correctDigits[n] }, {n, 20,30}]
Out[15]=
{{20,0}, {21,1}, {22,0}, {23,1}, {24,0}, {25,1}, {26,1}, {27,1}, {28,1}, {29,1}, {30,1}}
Fascinating! We see that 21 terms give the first correct digit past the decimal point, but
then this digit is incorrect with 22 terms. This must be due to the fact that Madhava’s
series is an alternating series, with alternately positive and negative terms. With 25 or
more terms, this digit seems to be consistently correct. Let’s collect a bit more data to
see if the first digit is ever correct with less than 20 terms.
In[16]:=
nDigits = Table[{n, correctDigits[n] }, {n, 10,40}]
Out[16]=
{{10,0}, {11,0}, {12, 0}, {13,0}, {14,0}, {15,0}, {16,0}, {17,0}, {18,0}, {19, 1}, {20,0},
{21,1}, {22,0}, {23,1}, {24,0}, {25,1}, {26,1}, {27,1}, {28,1}, {29,1}, {30, 1},
{31,1}, {32,1}, {33,1}, {34, 1}, {35,1}, {36,1}, {37,1}, {38,1}, {39,1}, {40,1}}
Typeset Now we see that the first decimal digit is correct with 19 terms, but it’s not consistently
mathematical | correct until we have 25 or more terms. Since | think it’s important for the digits to be
tati . . . A .
;:yaspzzislmper ¥ consistently correct, | vxull;e 0, = 25.[That is, it appears that n; = 25 is the smallest
attention to integer such that Madhava’s series gives one correct digit of 7t (past the decimal point)
exponents,

. > 1
subscripts, and gtl” 1=y [erms.

other symbols.

6 | sample project report.nb

Second correct digit

I know that about 620 terms will be required to obtain the second digit of rt. Since
additional terms may be some alternating correct/incorrect, we will find the number of
correct digits for n terms, for n in an interval around 620.

In[17]:=
nDigits = Table[{n, correctDigits[n] }, {n, 600,650}]
out[17]=
{{600,1}, {601,2}, {602,1}, {603,2}, {604,1}, {605,2}, {606,1}, {607,2}, {608,1},
{609,2}, {610,1}, {611,2}, {612,1}, {613,2}, {614,1}, {615,2}, {616,1}, {617,2},
{618,1}, {619,2}, {620,1}, {621,2}, {622,1}, {623,2}, {624,1}, {625,2}, {626,1},
{627,2}, {628,2}, {629,2}, {630,2}, {631,2}, {632,2}, {633,2}, {634,2},
{635,2}, {636,2}, {637,2}, {638,2}, {639,2}, {640,2}, {641,2}, {642,2},
{643,2}, {644,2}, {645,2}, {646,2}, {647,2}, {648,2}, {649, 2}, {650,2}}

With a bit of trial and error, it seems that we get two correct digits of 7t when adding up
627 or more terms of Madhava’s series. So let n, = 627.

Third correct digit

| am guessing that the third correct digit will require a few thousand terms. Here is an
initial calculation to determine this:

sample project report.nb | 7

In[18]:=
nDigits = Table[{n, correctDigits[n] }, {n, 1000, 5000, 100} |
ListPlot [nDigits, AxesLabel » {"terms in sum", "correct digits"}]

Out[18]=
{{1000,2}, {1100, 2}, {1200, 2}, {1300, 2}, {1400, 2}, {1500, 2},

{1600, 2}, {1700, 3}, {1800, 3}, {1900, 3}, {2000, 3}, {2100, 3}, {2200, 3},
{2300, 3}, {2400, 3}, {2500, 3}, {2600, 3}, {2700, 3}, {2800, 3}, {2900, 3},
{3000, 3}, {3100, 3}, {3200, 3}, {3300, 3}, {3400, 3}, {3500, 3}, {3600, 3},
{3700, 3}, {3800, 3}, {3900, 3}, {4000, 3}, {4100, 3}, {4200, 3}, {4300, 3},
{4400, 3}, {4500, 3}, {4600, 3}, {4700, 3}, {4800, 3}, {4900, 3}, {5000, 3} }

Out[19]=
correct digits

30F 0000000000000000000000000000000000
28}
26}
24

221

200 eeccee

2000 3000 4000 5000

terms in sum

It turns out that the third correct digit is obtained somewhere between 1600 and 1700
terms. Let’s see how many correct digits are obtained for each number of terms in this
range.

8 | sample project report.nb

In[20]:=

nDigits = Table[{n, correctDigits[n] }, {n, 1600,1700}]
ListPlot [nDigits, AxesLabel » {"terms in sum", "correct digits"}]

Out[20]=

{{1600,2}, {1601, 2}, {1602, 2}, {1603,2}, {1604, 2}, {1605, 2}, {1606, 2}, {1607, 2},
{1608,2}, {1609, 2}, {1610, 2}, {1611,2}, {1612,2}, {1613,2}, {1614, 2}, {1615,2},
{1616,2}, {1617, 2}, {1618, 2}, {1619,2}, {1620, 2}, {1621,2}, {1622, 2}, {1623,2},
{1624,2}, {1625, 2}, {1626, 2}, {1627,2}, {1628,2}, {1629, 2}, {1630, 2}, {1631, 2},
{1632,2}, {1633, 2}, {1634,2}, {1635,2}, {1636,2}, {1637,2}, {1638,2}, {1639, 2},
{1640,2}, {1641, 2}, {1642,2}, {1643,2}, {1644,2}, {1645,2}, {1646,2}, {1647,2},
{1648,2}, {1649, 2}, {1650, 2}, {1651,2}, {1652,2}, {1653,2}, {1654, 2}, {1655,2},
{1656,2}, {1657, 2}, {1658,2}, {1659,2}, {1660,2}, {1661,2}, {1662,2}, {1663,2},
{1664,2}, {1665, 2}, {1666,2}, {1667,2}, {1668,2}, {1669, 2}, {1670, 2}, {1671,2},
{1672,2}, {1673, 2}, {1674, 2}, {1675,2}, {1676,2}, {1677,2}, {1678, 2}, {1679, 2},
{1680,2}, {1681, 2}, {1682,2}, {1683,2}, {1684,2}, {1685,2}, {1686,2},
{1687,2}, {1688, 3}, {1689, 2}, {1690, 3}, {1691,2}, {1692, 3}, {1693, 2},

{1694, 3}, {1695,2}, {1696, 3}, {1697,2}, {1698, 3}, {1699, 2}, {1700, 3} }

Out[21]=

correct digits

3.0

2.8

26

24

22

2.0

T e tes0 w0 teso arop oo T

We see that the third correct digit first appears for 1688 terms, but then this digit is
alternately correct and incorrect as we add successive terms. Let’s explore what
happens above 1700 terms. It seems we might have to go rather high, so we’ll focus on
aplot first.

sample project report.nb | 9

In[22]:=
nDigits = Table[{n, correctDigits[n] }, {n, 1700, 3000}];
ListPlot [nDigits, AxesLabel » {"terms in sum", "correct digits"}]

Out[23]=
correct digits

3.0

281

26

241

221

20F

1800 2000

2200 2400 2600 2800

—L— terms in sum
3000

The last n that gives only two correct digits seems to be 2453, so let’s zoom in near that
value.

10 | sample project report.nb

In[24]:=

nDigits = Table[{n, correctDigits[n] }, {n, 2400, 2500}]
ListPlot [nDigits, AxesLabel » {"terms in sum", "correct digits"}]

Out[24]=

{ {2400, 3}, {2401, 2}, {2402,3}, {2403, 2}, {2404, 3}, {2405,2}, {2406, 3}, {2407, 2},
{2408, 3}, {2409, 2}, {2410, 3}, {2411, 2}, {2412,3}, {2413,2}, {2414, 3}, {2415,2},
{2416, 3}, {2417, 2}, {2418,3}, {2419, 2}, {2420,3}, {2421,2}, {2422,3}, {2423,2},
{2424, 3}, {2425,2}, {2426,3}, {2427,2}, {2428,3}, {2429,2}, {2430, 3}, {2431, 2},
{2432,3}, {2433, 2}, {2434,3}, {2435,2}, {2436,3}, {2437,2}, {2438,3}, {2439, 2},
{2440, 3}, {2441, 2}, {2442,3}, {2443,2}, {2444,3}, {2445,2}, {2446, 3}, {2447,2},
{2448, 3}, {2449, 2}, {2450, 3}, {2451, 2}, {2452,3}, {2453,2}, {2454, 3}, {2455, 3},
{2456, 3}, {2457, 3}, {2458,3}, {2459, 3}, {2460,3}, {2461,3}, {2462,3}, {2463,3},
{2464, 3}, {2465, 3}, {2466,3}, {2467,3}, {2468,3}, {2469,3}, {2470,3}, {2471, 3},
{2472,3}, {2473, 3}, {2474,3}, {2475,3}, {2476,3}, {2477,3}, {2478, 3}, {2479, 3},
{2480, 3}, {2481, 3}, {2482,3}, {2483,3}, {2484,3}, {2485,3}, {2486, 3},

{2487, 3}, {2488, 3}, {2489, 3}, {2490, 3}, {2491, 3}, {2492, 3}, {2493, 3},

{2494, 3}, {2495, 3}, {2496, 3}, {2497,3}, {2498,3}, {2499, 3}, {2500,3}}

Out[25]=

correct digits

3.0

2.8

26

24

22

2.0

n —t L L L ferms in sum
2420 2440 2460 2480 2500

It looks like we consistently get three correct digits for n = 2454, so we have n3 = 2454.

Discussion

Conclusions and Conjectures

Summarize your
observations and
conclusions at the

end of your ;

As shown in the computations, plots, and discussion above, we found n; = 25, n, = 627,
and n; = 2454. That is, when n = ny, the sum of the first n terms of Madhava series
produces at least k correct digits of 7t past the decimal point. We know from class that
the Madhava series requires about ten times as many terms to produce each additional
correct digit of . Thus, it makes sense that n, 210 n; and n3 = 100 n;. | would guess that
ny is about 25,000, but it could be substantially larger than this.

sample project report.nb | 11

Limitations and Extensions

Consider what ——= My method of running computeSum[n] for various value of n is not a great way of

limitations are fiouri

present in your code f1guUring out how many terms are required to obtain a desired number of digits of 1. As n

and methodology. gets larger, it gets more difficult to figure out the next terms in the sequence. | could
write more efficient code that would better automate this search. Perhaps this could be
also studied theoretically (rather than computationally) using results about rates of

convergence of infinite series.

Consider directions I am curious about the alternating behavior that | notice near each sequence value ny.

for future study. \ Specifically, | would like to better understand why there is a range of n values where the
number of correct digits of rralternates between two consecutive integers before
stabilizing at the larger integer. | suspect this is because Madhava’s series is an

alternating series, but | would like to look into this further.

As another extension for future work, | would like to compare the Madhava series with
other methods of computing digits of t. | would like to find methods that compute
digits of rmuch more quickly than the Madhava series formula.

