Polygon Triangulation Theorem

MATH 261 Computational Geometry

Complete the proof of the following theorem.

Theorem: Every triangulation of a polygon P with n vertices has n-2 triangles and n-3 diagonals.

Proof (by induction):

First state the base case. Explain why it is true.

Inductive hypothesis: Let n > 3 be an integer, and assume the statement is true for all polygons with fewer than n vertices.

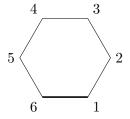
Now explain how the statement follows for a polygon with n vertices.

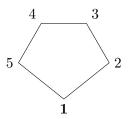
Edge Contraction Example

MATH 261 Computational Geometry

Let P_n be a convex polygon with vertices labeled 1 to n counterclockwise. Let \mathcal{T}_n be the set of all triangulations of P_n , and let t_n be the number of elements of \mathcal{T}_n .

Define the map $\phi: \mathcal{T}_6 \to \mathcal{T}_5$ that contracts the edge $\{1,6\}$ to the point 1. To illustrate this map, first draw all triangulations in \mathcal{T}_6 and \mathcal{T}_5 . Then draw an arrow from each triangulation $T \in \mathcal{T}_6$ to $\phi(T)$.





Use your illustration to explain why

$$t_6 = \sum_{T \in \mathcal{T}_5} [\text{degree of vertex 1 in triangulation } T].$$

Then sum over all vertices of T to explain why

$$5 \cdot t_6 = 2 \cdot 7 \cdot t_5.$$

Now generalize. What equation relates t_{n+2} and t_{n+1} ?