How Many Triangles in a Triangulation?

MATH 261 Computational Geometry

Suppose point set S has h points on its convex hull and k points in its interior. (Assume the points of S are not all collinear.) Let planar graph G be a triangulation of S.

Us	e the following steps and Euler's formula to determine t , the number of triangles in G .
1.	Express V , the number of vertices of G , in terms of h and k .
2.	Express F , the number of faces of G , in terms of t .
3.	Express E , the number of edges of G , in terms of h , k , and t . To do this, count the edges of each triangular face, then add the edges of the unbounded exterior face.
4.	Express Euler's formula in terms of h, k , and t . Then solve for t .

Bonus: How many edges are in G?

Flip Graphs

MATH 261 Computational Geometry

1. Construct the flip graph for the following point set.

•

.

2. Construct the flip graph for the following point set.

•

•

• •

3. Let S be the 3×3 grid of points, shown below. Find triangulations T_1 and T_2 of S such that the number of edge flips required to transform T_1 into T_2 is as large as possible. (This gives the diameter of the flip graph of S).

• • •

• • •

. . .