How Many Triangles in a Triangulation? MATH 261 Computational Geometry Suppose point set S has h points on its convex hull and k points in its interior. (Assume the points of S are not all collinear.) Let planar graph G be a triangulation of S. | Us | e the following steps and Euler's formula to determine t , the number of triangles in G . | |----|--| | 1. | Express V , the number of vertices of G , in terms of h and k . | | 2. | Express F , the number of faces of G , in terms of t . | | 3. | Express E , the number of edges of G , in terms of h , k , and t . To do this, count the edges of each triangular face, then add the edges of the unbounded exterior face. | | 4. | Express Euler's formula in terms of h, k , and t . Then solve for t . | **Bonus:** How many edges are in G? ## Flip Graphs MATH 261 Computational Geometry 1. Construct the flip graph for the following point set. • . 2. Construct the flip graph for the following point set. • • • • **3.** Let S be the 3×3 grid of points, shown below. Find triangulations T_1 and T_2 of S such that the number of edge flips required to transform T_1 into T_2 is as large as possible. (This gives the diameter of the flip graph of S). • • • • • • . . .