RANDOM VARIABLE: a real-valued function on a sample space

1. State the possible values of each random variable below, and say whether it is discrete or continuous. You might need to make some assumptions; if so, state your assumptions.
(a) $X=$ the sum of the numbers that appear when two standard dice are rolled

$$
X \in\{2,3,4, \ldots, 12\} \quad \text { discrete }
$$

(b) $N=$ the number of defective circuit boards in a shipment

$$
N \in\{0,1,2, \ldots\} \text { or }\{0,1,2, \ldots, \max \} \text { discrete }
$$

(c) T = the high temperature in Northfield on February 29, 2020

$$
\begin{aligned}
& T \in \mathbb{R} \text { or } T \in(\text { min, max }) \quad \text { es limited to discrete values by our } \\
& \text { ability to measure }
\end{aligned}
$$

(d) $Y=$ the annual income of a randomly-selected person in Minnesota

$$
Y \in\{0,1,2, \ldots\} \text { cents/dollars, discrete }
$$

(e) $L=$ the length of a fish caught in Lake Itasca

$$
L \in(0, \infty) \mathrm{cm} \text { or } L \in(0,1000) \mathrm{cm} \text { continuous }
$$

Probability Mass Function (mf): of a discrete rv X is defined $p(x)=P(X=x)$

CUMULATIVE DISTRIBUTION FUNCTION (cd): of a discrete rv X with put $p(x)$ is defined $F(x)=p(\bar{X} \leqslant x)=\sum_{y<x} p(y)$
2. Suppose that one out of every four calls you receive is a robocall. (Assume that all calls are independent.)
(a) Let $X=1$ if the next call you receive is a robocall, and let $X=0$ otherwise. What type of random variable is X ? State the probability mass function (mf) and cumulative distribution function (cf) of X. Then sketch each function.

$$
\begin{aligned}
& \mathbb{X} \in\{0,1\} \text {, so } \bar{X} \text { is a Bernoulli rv } \\
& \text { piaf: } p(0)=\frac{3}{4} \\
& p(1)=\frac{1}{4} \\
& p(x)=0 \text { otherwise } \\
& \frac{1}{4}
\end{aligned}
$$

$$
0
$$

(b) Let Y be the number of robocalls in the next four phone calls. State the emf and pdf of Y, and sketch each function.

$$
\begin{aligned}
& p(0)=\left(\frac{3}{4}\right)^{4}=0.31 \\
& p(1)=4\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{3}=0.42 \\
& p(2)=\binom{4}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{2}=0.21 \\
& p(3)=4\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)=0.05 \\
& p(4)=\left(\frac{1}{4}\right)^{4}=0.004 \\
& p(x)=0 \text { otherwise }
\end{aligned}
$$

3. The cdf for a random variable X is as follows:
(a) What is $P(X=2)$?

$$
\begin{aligned}
& \text { as follows: } \\
& \qquad l^{\text {largest possible value }} \\
& \text { (of X that is strictly } \\
& \text { less than 2 }
\end{aligned}
$$

$$
\begin{aligned}
P(X=2)= & F(2)-F(2-)=0.8-0.5=0.3 \\
& P(X \leq 2)-P(X<2)
\end{aligned}
$$

(b) What is $P(X=3)$?

$$
P(X=3)=F(3)-F(3-)=0.8-0.8=0
$$

(c) What is $P(2.5 \leq X)$?

$$
P(2.5 \leq X)=1-F(2.5-)=1-0.8=0.2=P(X=4)
$$

(d) Sketch the emf of X .

4. Which of the following functions is the emf for some random variable X ?
(a) $p(x)=\frac{x^{2}}{50}$ for $x=1,2, \ldots, 5$

$$
\sum_{x=1}^{5} \frac{x^{2}}{50}=\frac{1}{50}+\frac{4}{50}+\frac{9}{50}+\frac{16}{50}+\frac{25}{50}=\frac{55}{50} \neq 1 \text {, so } \mathrm{NO} \text { ! }
$$

(b) $p(x)=\log _{10}\left(\frac{x+1}{x}\right)$ for $x=1,2, \ldots, 9$

$$
\left.\begin{array}{l}
x)=\log _{10}\left(\frac{x}{x}\right) \operatorname{tor} x=1,2, \ldots, 9 \\
p(x) \geq 0 \\
\sum_{x=1}^{4} p(x)=\sum_{x=1}^{q} \log _{10}\left(\frac{x+1}{x}\right)=\log _{10}\left(\frac{x}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdots \cdots \cdot \frac{10}{9}\right)=\log _{16}(10)=1
\end{array}\right)
$$

5. Which of the following properties must hold for any $\operatorname{cdf} \mathrm{F}(\mathrm{x})$? For each property, either say why it must hold or give a counterexample to show that it might not hold.
(a) $\lim _{b \rightarrow-\infty} F(b)=0 \quad$ Yes: $P(X \leq b)$ must go to zero as b decreases towards $-\infty$.
(b) $\lim _{b \rightarrow \infty} F(b)=1$ Yes: $P(X \leq b)$ must go to 1 as b increases towards ∞.
(c) $F(x)$ is continuous N_{0} : see counterexamples in \#2 and \#3 above.
(d) $F(x)$ is nondecreasing; that is, if $a<b$, then $F(a) \leq F(b)$

$$
\text { Yes: if } a<b \text {, then } F(a)=P(X \leq a) \leq P(X \leq a)+P(a<X \leq b)=P(X \leq b)=F(b)
$$

(e) $F(b)=0.5$ for some value b
No: Counterexamples in \#2 above.

