RANDOM VARIABLE: a real-valued function on a sample space

1. State the possible values of each random variable below, and say whether it is discrete or continuous. You might need to make some assumptions; if so, state your assumptions.

(a) X = the sum of the numbers that appear when two standard dice are rolled

X & {2,3,4,..., 12} discrete

(b) N = the number of defective circuit boards in a shipment

(c) T = the high temperature in Northfield on February 29, 2020

TER or TE (min, max) OR limited to discrete values by our obility to measure

(d) Y = the annual income of a randomly-selected person in Minnesota

Y & {0,1,2,...} cents/dollars, discrete

(e) L = the length of a fish caught in Lake Itasca

 $Le(0,\infty)$ cm or Le(0,1000) cm continuous

PROBABILITY MASS FUNCTION (PMf): of a discrete
$$rv X$$

is defined $p(x) = P(X = x)$

COMULATIVE DISTRIBUTION FUNCTION (cdf): of a discrete $r_{x} X$ with part p(x) is defined $F(x) = P(X \le x) = \sum_{y < x} p(y)$

2. Suppose that one out of every four calls you receive is a robocall. (Assume that all calls are independent.)

(a) Let X = 1 if the next call you receive is a robocall, and let X = 0 otherwise. What type of random variable is X? State the probability mass function (pmf) and cumulative distribution function (cdf) of X. Then sketch each function.

(b) I at V has the number of rehealls in the next four phone calls. State the pmf and odf of V and skatch

6

(b) Let *Y* be the number of robocalls in the next four phone calls. State the pmf and cdf of *Y*, and sketch each function. cdf $\rho(0) = \left(\frac{3}{4}\right)^{4} = 0.3($ 0.94 - 0.196 $p(1) = 4\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^3 = 0.42$ F(x) $\rho(2) = {\binom{4}{2}} {\binom{1}{4}}^2 {\binom{3}{4}}^2 = 0.21$ $p(3) = 4 \left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right) = 0.05$ 0.31 $p(y) = (\frac{1}{4})^{y} = 0.00 y$ p(x)= O otherwise (a) What is P(X = 2)? (b) What is P(X = 3)? P(x = 3)? P(x = 2) P(x = 3)? P(x = 2) P(x = 2) P(x = 3)? P(x = 2) P(x = 2) P(x = 2) P(x = 3)? P(x = 2) P(x = 2) P(x = 2) P(x = 3)? P(x = 2) P(x = 2) P(x = 2) P(x = 3)? P(X = 3) = F(3) - F(3 -) = 0.8 - 0.8 = 0(c) What is $P(2.5 \le X)$? $P(2.5 \le X) = 1 - F(2.5-) = 1 - 0.8 = 0.2 = P(X=4)$ $\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\$ (d) Sketch the pmf of X. p(4) = 0.2 4. Which of the following functions is the pmf for some random variable *X*? (a) $p(x) = \frac{x^2}{50}$ for x = 1, 2, ..., 5 $\sum_{1}^{5} \frac{x^{2}}{50} = \frac{1}{50} + \frac{4}{50} + \frac{9}{50} + \frac{16}{50} + \frac{25}{50} = \frac{55}{50} \neq 1, \quad s_{0} = N0.$ (b) $p(x) = \log_{10}\left(\frac{x+1}{x}\right)$ for x = 1, 2, ..., 9 $p(x) \ge 0$ p(x) = 0 $p(x) = \sum_{x=1}^{q} \log_{10}\left(\frac{x+1}{x}\right) = \log_{10}\left(\frac{z}{1}, \frac{z}{2}, \frac{y}{3}, \dots, \frac{10}{4}\right) = \log_{10}\left(10\right) = 1$ Benford's Law

(a) lin (b) lin	$n_{b\to-\infty}F(b)=0$	Yes	ī	,														
(b) lin			: [Р(Х)	. = b)	יי (nust	g°	to	Zero	۵۵	Ь	dec	reases	tou	sords	- 00.	
	$n_{b\to\infty}F(b)=1$	Yes:	P(X	.=b)	μu	s+	g o - ²	to 1	. as	Ь	incre	eases	tou	sords	Ø.			
(c) F (:	(x) is continuous	5 No:	see	count	er exa	mp le	s in	#2	2 a	nd 4	±3 ø	bove						
(d) F ((x) is nondecrea	sing; that	is, if a	1 < b,	then	F(a) ≤ F	7(b)										
	Yes: if ac	b, then f	F(a)=	P(X	≤a) 5	≤ P((X ≤ .	a) +	P(a	e X e	6) =	P(]	(= 6)	= f	=(P)			
(e) F((b) = 0.5 for son	ne value <i>b</i>						thi	's is	Non-ne	gative							
	No: countere	Xamples in	<u>#2</u>	above														