2. Among persons donating blood to a clinic, 85% have Rh^{+}blood. Six people donate blood at the clinic on a particular day.
(a) Find the probability that at most three of the six have Rh^{+}blood.

$$
\begin{gathered}
X \sim \operatorname{Bin}(6,0.85) \quad P(X \leq 3)=\sum_{x=0}^{3}\binom{6}{x}(0.85)^{x}(0.15)^{6-x}=0.047 \\
R: \quad \text { pbinom }(3,6,0.85)
\end{gathered}
$$

(b) Find the probability that at most one of the six does not have Rh^{+}blood.

$$
\begin{aligned}
P(X \geq 5)=\sum_{x=5}^{6}\binom{6}{x}(0.85)^{x}(0.15)^{6-x}= & 0.776 \\
& 1-\operatorname{pbinom}(4,6,0.85)=\operatorname{pbinom}(1,6,0.15)
\end{aligned}
$$

(c) What is the probability that the number of Rh^{+}donors lies within two standard deviations of the mean number?

$$
\begin{aligned}
& \text { Chebyshev: } P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}} \quad \text { Here, } \mu=6(0.85)=5.1, \quad \sigma=0.874 \\
& \text { let } k=2: \quad P(|x-5.1| \geq 2(0.874)) \leq \frac{1}{4} \\
& 1.75 \\
& P(3.35<X<6.85) \geq \frac{3}{4} \\
& P(X \in\{4,5,6\}) \geq \frac{3}{4} \\
& \text { We know the pmif of } X \text {, so: } \\
& P(X \in\{4,5,6\})=\sum_{x=4}^{6}\binom{6}{x}(0.85)^{x}(0.15)^{6-x}=0.953 \\
& \text { pbinom }(6,6,0.85)-\operatorname{pbinom}(3,6,0.85)
\end{aligned}
$$

(d) The clinic needs six Rh^{+}donors on a certain day. How many people must donate blood to have the probability of obtaining blood from at least six Rh^{+}donors over 0.95 ?

$$
\begin{aligned}
& \text { Let } I_{n} \sim \operatorname{Bin}(n, 0.85) \text {. We wart } n \text { such that } P\left(Y_{n} \geq 6\right) \geq 0.95 \text {. } \\
& 1-\operatorname{pbinom}(5, n, 0.85) \longrightarrow 1-P\left(I_{n} \leq 5\right) \geq 0.95 \\
& \begin{aligned}
& \text { Test some } n: \\
& n=8: P\left(I_{8} \geq 6\right)=0.895
\end{aligned} \quad \sum_{y=6}^{n}\binom{n}{y}(0.85)^{y}(0.15)^{n-4} \geq 0.95 \\
& n=8: \quad P\left(I_{8} \geq 6\right)=0.895 \\
& n=9: \quad P\left(Y_{q} \geq 6\right)=0.966 \text { That, } n=9 \text { will work. }
\end{aligned}
$$

POISSON DISTRIBUTION
Suppose we have a sequence of "events" that:

- occur independently
- the average number of events in some fixed time interval is μ (known).

EXAMLES: arrival of emails, phone calls, customers entering a store, emission of radioactive particles, cars passing a spot on a road

If X is the count of such events occurring in a fixed time interval, then X has a poisson distribution. Then:

$$
P(X=x)=p(x ; \mu)=e^{-\mu} \frac{\mu^{x}}{x!} \quad \text { for } \quad x=0,1,2,3, \ldots
$$

check: $\sum_{k=0}^{\infty} e^{-\mu} \frac{\mu^{k}}{k!}=e^{-\mu} \sum_{k=0}^{\infty} \frac{\mu^{k}}{k!}=e^{-\mu}\left(e^{\mu}\right)=1$
Taylor Series for e^{x} :

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

$$
E(X)=\operatorname{Var}(X)=\mu
$$

In $R: \quad$ dpois $(x, \mu) \longleftarrow$ gives $P(X=x)$

$$
\text { ppois }(x, \mu)<\text { gives } P(x \leq x)
$$

