POISSON DISTRIBUTION

$$
\begin{aligned}
& \text { If } X \sim \text { Poisson }(\mu) \text {, then: } \quad P(X=x)=p(x ; \mu)=e^{-\mu} \frac{\mu^{x}}{x!} \quad \text { for } x \in\{0,1,2, \ldots\} \\
& \text { and } E(X)=\mu \text { and } \operatorname{Var}(X)=\mu .
\end{aligned}
$$

1. Suppose that the number of phone calls an office receives has a Poisson distribution with a mean of 5 calls per hour.
(a) What is the probability that exactly 7 calls are received between 10:00 and 11:00?

$$
\begin{aligned}
& \text { Let } X \sim P_{0 i s s o n}(5) \\
& \text { Then } P(X=7)=e^{-5} \frac{5^{7}}{7!}=0.104 \quad R: \quad \operatorname{dpois}(7,5)
\end{aligned}
$$

(b) What is the probability that more than 7 calls are received between 10:00 and 11:00?

$$
\begin{aligned}
P(X>7) & =1-\sum_{x=0}^{7} e^{-5} \frac{\frac{s}{x}_{x}^{x!}}{} & R: 1-\underbrace{\operatorname{ppois}(7,5)}_{P(X \leq 7)}
\end{aligned}
$$

(c) What is the probability that exactly 10 calls are received between 10:00 and 12:00?

$$
\begin{align*}
& \text { Let } X_{1} \text { and } X_{2} \sim \text { Poisson (5). Then } P\left(X_{1}+X_{2}=10\right)=\sum_{n=0}^{10} P\left(X_{1}=n\right) P(\tag{5}\\
& \text { or. Let } Y \sim \text { Poisson }(10) \text {. Then } Y \text { is the number of calls in } 2 \text { hours. } \\
& P(Y=10)=e^{-10} \frac{10^{10}}{10!}=0.125 \quad R: \operatorname{dpois}(10,10)
\end{align*}
$$

$$
\text { Then } P\left(X_{1}+X_{2}=10\right)=\sum_{n=0}^{10} P\left(X_{1}=n\right) P\left(X_{2}=10_{n}\right)=\sum_{n=0}^{10}\left(e^{-5} \frac{S^{n}}{n!}\right)\left(e^{-5} \frac{5^{10-n}}{(10-n)!}\right)
$$

2. Suppose that a machine produces items, 2% of which are defective. Let X be the number of defective items among 500 randomly-selected items produced by the machine.
(a) What is the distribution of X ?

$$
X \sim \operatorname{Bin}(500,0.02)
$$

(b) What are the mean and variance of X ?

$$
\begin{aligned}
& E(X)=n p=500(0.02)=10 \\
& \operatorname{Var}(X)=n p(1-p)=500(0.02)(0.98)=9.8
\end{aligned}
$$

(c) What is $P(X=12)$?

$$
P(X=12)=\binom{500}{12}(0.02)^{12}(0.98)^{488}=0.0955
$$

(d) What Poisson distribution approximates the distribution of X ?

$$
\begin{array}{r}
\text { Poisson with mean } 10 . \\
\text { Let } Y \sim \text { Poisson }(10) .
\end{array}
$$

$$
\text { Let } Y \sim \text { Poisson (10). }
$$

(e) Use your Poisson distribution to approximate $P(X=12)$?

$$
\underset{\text { binomial }}{P(X=12)} \underset{\text { Poisson }}{P(Y=12)}=e^{-10} \frac{10^{12}}{12!} \approx 0.0948
$$

NOTE: In a binomial experiment with large $n, b(x ; n, p) \approx p(x ; n p)$.
Approximation is very good if n is b big $(s a y, n \geq 20)$ and p is small (say, $n p \leq 10$).


```
> plot(0:20, dbinom(0:20, 500, .02), col="purple", pch=5)
> points(0:20, dpois(0:20, 10), col="red", pch=8)
```

3. Suppose that there are N balls in an urn; M of the balls are green, and the rest are not green.
(a) How many ways can n balls be chosen from the urn, if the chosen balls include exactly x green balls?

$$
\begin{aligned}
& \text { Choose } x \text { green } \\
& \text { balls from } M \\
& \downarrow \\
& \binom{M}{x}\binom{N-M}{n-x}
\end{aligned}
$$

(b) If n balls are chosen from the urn at random, what is the probability that exactly x green balls will be chosen?

$$
P(x \text { green balls chosen })=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \underbrace{\text { mass formula }}_{\text {Hypergeometric probability }} \text { total number of ways to choose } n \text { balls }
$$

(c) Given N, M, and n, what are the bounds on the possible values of x ?

$$
\begin{aligned}
& 0 \leq x, \\
& n-x \leq N-M, \quad x \leq n
\end{aligned}
$$

