Negative binomial with $r=1, p=\frac{3}{8}$ or Geometric with $p=3 / 8$

1. Suppose that three out of every eight calls you receive is a robocall, and successive calls are independent. Let X be the number of calls you receive, until (and including) the next robocall.
(a) What is $P(X=3)$?

$$
P(X=3)=\left(\frac{5}{8}\right)^{2}\left(\frac{3}{8}\right)_{\text {not robocalls }}=\frac{75}{512} \approx 0.146
$$

(b) If n is any positive integer, what is $P(X=n)$?

$$
P(X=1)=\frac{3}{8}
$$

$$
\begin{aligned}
P(X= & n)=\left(\frac{5}{8}\right)^{n-1}\left(\frac{3}{8}\right)=\frac{5^{n-1} \cdot 3}{8^{n}} \\
\text { not robocalls }\} & \text { r robocall }^{(X)}
\end{aligned}
$$

$$
P(X=2)=\frac{3}{8} \cdot \frac{5}{8}
$$

GEOMETRIC

$$
P(X=3)=\frac{3}{8} \cdot\left(\frac{5}{8}\right)^{2}
$$

SEQUENCE
(c) What is $E(X)$?

$$
P(X=4)=\frac{3}{8} \cdot\left(\frac{5}{8}\right)^{3}
$$

$$
\begin{aligned}
& \text { at is } E(X) \text { ? } \quad \begin{array}{l}
\text { value probability } \\
E(X)=\sum_{n=1}^{\infty} n \cdot p(n)=\sum_{n=1}^{\infty} n\left(\frac{5}{8}\right)^{n-1}\left(\frac{3}{8}\right)=\frac{\frac{3}{8}}{\left(1-\frac{5}{8}\right)^{2}}=\frac{\frac{3}{8}}{\left(\frac{3}{8}\right)^{2}}=\frac{8}{3} \\
\text { geometric series: } \sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \quad \text { for }|r|<1 \\
\text { differentiate: } \quad \sum_{n=1}^{\infty} n a r^{n-1}=\frac{a}{(1-r)^{2}} \quad \text { for }|r|<1
\end{array} \quad \begin{array}{l}
r=\frac{3}{8}
\end{array}
\end{aligned}
$$

NEGATIVE BINOMIAL ru with $r=3, p=\frac{3}{8}$
2. Let Y be the number of calls until (and including) the third robocall. What is $P(Y=n)$?

$$
P(Y=n)=\binom{n-1}{2}\left(\frac{3}{8}\right)^{2}\left(\frac{5}{8}\right)^{n-3}\left(\frac{3}{8}\right)=\binom{n-1}{2}\left(\frac{3}{8}\right)^{3}\left(\frac{5}{8}\right)^{n-3}
$$

number of ways to get exactly 2 robocalls poo. of $n-3$ non-robocalls prob. that the $n^{\text {th }}$ in the first n-l calls prob. of 2 robocalls

| | GEOMETRIC |
| :---: | :---: | NEG. BINOMIAL $\frac{1}{p}$ trials for each success, on average

CAUTION: SOme authors define these variables by the number of failures before the $r^{\text {th }}$ success, not the total number of trials.
3. An interviewer must find 10 people who agree to be interviewed. Suppose that when asked, a person agrees to be interviewed with probability 0.4 .
(a) What is the probability that the interviewer will have to ask exactly 20 people?

Let $X \sim N B(r=10, p=0.4)$. Then $P(X=20)=\binom{20-1}{10-1}(0.4)^{10}(0.6)^{10}=0.0586$
(b) What are the mean and standard deviation of the number of people that the interviewer will have to ask?

$$
\begin{aligned}
E(X)=\frac{r}{p}=\frac{10}{0.4}=25 \quad \operatorname{Var}(X) & =\frac{r(1-p)}{p^{2}}=\frac{10(0.6)}{(0.4)^{2}}=37.5 \\
\sigma_{x} & =\sqrt{37.5}=6.12
\end{aligned}
$$

4. If X has a geometric distribution with parameter p, and k is a positive integer, find a simple expression for $P(X>k)$.
$X>k$ means that the first k trials are all failures Prob. of this is $(1-p)^{k}$.
This: $P(X>k)=(1-p)^{k} \quad$ also: $P(X>k)=\sum_{n=k+1}^{\infty}(1-p)^{n-1} p$
GEOMETRY TAIL PROBABILITY
5. Robocalls, again. $p=\frac{3}{8}$
(a) What is the probability that none of the first four calls are robocalls?

$$
P(X>4)=(1-p)^{4}=\left(\frac{5}{8}\right)^{4} \approx 0.1526
$$

(b) If none of the first four calls are robocalls, what is the probability that none of the first seven calls are robocalls?

$$
\begin{aligned}
P(X>7 \mid X>4)
\end{aligned} \begin{aligned}
\begin{array}{c}
\text { def. of } \\
\text { conditional probability }
\end{array} & P(X>7 \text { and } X>4) \\
P(X>4) & =\frac{P(X>7)}{P(X>4)}=\frac{(1-p)^{7}}{(1-p)^{4}}=\underbrace{\left.(1-p)^{3}\right]}_{\uparrow} \\
& =\left(\frac{5}{8}\right)^{3}=0.244
\end{aligned} P(X>3)
$$

OBSERVATION: If $X \sim G_{\rho o}(p)$ and integers $O<s<t$,

$$
P(X>t \mid X>s)=P(X>t-s)
$$

Memoryless PROPERTY
of a geometric r.v.

