NORMAL DISTRIBUTION

- Describes the distributions of many physical quantities (egg. lengths, heights, weights, measurements)
- Related to the Central Limit Theorem (we will study this) PDF: $X \sim N(\mu, \sigma)$ means the pdf is $f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$

$$
\text { R FUNCTIONS: } \quad \operatorname{prorm}(x, \mu, \sigma) \text { - computes } P(X \leq x) \text { if } X \sim N(\mu, \sigma)
$$

$$
\text { norm }(p, \mu, \sigma) \text { - computes } X \text { such that } P(X \leq x)=p
$$

$$
\mu=0, \quad \sigma=1
$$

1. Let Z be a standard norma random variable.
(a) What is $P(Z \leq 0.8)$?

R: $\operatorname{pnorm}(0.8,0,1)$ or $\operatorname{pnorm}(0.8)$

$$
=0.788
$$

Wolfram Alpha:

(b) What number c is such that $P(Z \leq c)=0.4$?

R: $q^{n o r m}(0.4,0,1)$ or $q^{\text {norm }}(0.4)$
Wolfram Alpha:

$$
\text { inverse caff }[\text { normal distribution }[0,1], 0.4]
$$

2. Let X be a normal random variable with mean 24 and standard deviation 2 .
(a) What is $P(23 \leq X \leq 25)$?

$$
R: \quad \operatorname{prorm}(25,24,2)-\operatorname{prorm}(23,24,2)
$$

Wolfram Alpha: $\quad=0.382$
cdf[nornal distribution $[24,2], 25]-c d f[$ normaldistribution $[24,2], 23]$

(b) What number c is such that $P(X \geq c)=0.2$?

$$
\begin{aligned}
& \text { inversecdf }[\text { normaldistribution }[2 \\
& q_{\text {norm }}(0.8,24,2)=25.68
\end{aligned}
$$

3. What is the probability that a normal random variable is within 1.5 standard deviations of its mean?

$$
\begin{gathered}
\text { Standard Normal: } \quad P(-1.5<z<1.5)=0.866 \\
=\text { pnorm }(1.5)-\text { phorm }(-1.5)
\end{gathered}
$$

STANDARDIZATION: If $X \sim N(\mu, \sigma)$,

$$
\text { then } Z=\frac{\bar{X}-\mu}{\sigma} \sim N(0,1) \rightarrow Z_{\sigma}+\mu=X
$$

$$
\text { Then: } \begin{aligned}
P(\mu-1.5 \sigma<X<\mu+1.5 \sigma) & =P(\mu-1.5 \sigma<Z \sigma+\mu<\mu+1.5 \sigma) \\
& =P(-1.5 \sigma<z \sigma<1.5 \sigma) \\
& =P(-1.5<z<1.5)
\end{aligned}
$$

4. Suppose that a fair, 6 -sided die is rolled 1000 times. Approximate the probability that the number 6 appears between 150 and 200 times (inclusive). Binomial experimat

$$
\begin{aligned}
& \text { Let } I \sim \operatorname{Bin}\left(1000, \frac{1}{6}\right) \text { be the number of } G s \text { rolled. } \\
& \text { Then } E(X)=n p=\frac{1000}{6} \text { and } \sigma_{x}=\sqrt{n p(1-p)}=\sqrt{1000\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)}=\sqrt{\frac{5000}{36}} \approx 11.8
\end{aligned}
$$

$$
\text { Then X is approximately normal with } \mu=\frac{1000}{6} \text { and } \sigma=11.8 \text {. }
$$

$$
\begin{array}{r}
\underbrace{P(150 \leq X \leq 200)}_{\text {this is } 0.926} \approx P(150 \leq Y \leq 200)=0.919 \\
\text { where } Y \sim N\left(\frac{1000}{6}, 11,8\right)
\end{array}\left[\begin{array}{c}
\text { Normal Approximation to } \\
\text { the Binomial } \\
\text { "good" when } n p \geq 10 \text { and } n(1-p) \geq 10
\end{array}\right]
$$

5. Let $f(x)$ denote the standard normal pdf. Estimate $f(1)$ using only the information in Table A. 3 in the text.
to be continued
6. Let $f(x)$ denote the pdf of the $N(\mu, \sigma)$ distribution. Show that the points of inflection lie at $x=\mu \pm \sigma$. (Hint: differentiate twice with respect to x.)
