Much 262 - 28 October 2019
NDR MAL DISTRIBUTION
• Describes the districtions of keny physical quantities
(e.g. lengths, heights, weights, measurements)
• Related to the Central Limit Theorem (e.e. cill study this)
PDF:
$$X \sim N(M, \sigma)$$
 means the pdf is $f(x_j, \mu, \sigma) = \frac{1}{\sigma(a\pi)} e^{-k_j m_j^2}(a\pi)$
R FUNCTIONS: pnorm (x, M, σ) - computes $P(X \le n)$ if $X \sim N(M, \sigma)$
quarm (p, H, σ) - computes X such that $P(X \le n) = p$
1. Let 2 he a standard normalization wariable
(a) What is $P(2 \le 0.8)^7$
R: pnorm $(0.3, 0, 1)$ or pnorm (0.3)
Using Alpha'
efficient distribution $(p, 1, \sigma) = 0.788$
(b) What number is such that $P(2 \le 0) = 0.42$
R: quarm $(D^2, 0, 1)$ or quarm (0.4)
Using $Alpha'$
inverse cell formul distribution $(p, 1, \sigma) = -0.25$
2. Let X be a normal random variable with mean 24 and standard deviation 2.
(a) What is $P(23 \le 3.2)^7$
R: pnorm $(25, 2.4), 2.3 - paorm $(23, 2.4, 2)$
Using Alpha'
inverse cell formul distribution $(p, 1, 2) = 0.788$
(b) What number c is such that $P(X \le c) = 0.42$
R: pnorm $(25, 2.4), 2.5 - paorm $(23, 2.4, 2)$
Using Alpha'
inverse cell formul distribution $(p, 1, 2) = paorm (2.3, 2.4, 2)$
(b) What number c is such that $P(X \ge c) = 0.5$
inverse cell formul distribution $(p, 1, 2) = p(X \le c) = 0.5$
inverse cell formul distribution $(p, 1, 2) = p(X \le c) = 0.5$
inverse cell formul distribution $(p, 2, 2) = 25.68$
 $(quarm $(0.4, 2.4, 2) = 25.68$$$$

3. What is the probability that a normal random variable is within 1.5 standard deviations of its mean?

Studend Normal:
$$P(-1.5 < Z < 1.5) = 0.866$$

= pnorm (1.5) = pnorm (-1.5)
STANDARDIZATION: If $X \sim N(n_{1}\sigma)$,
then $Z = \frac{X - n}{5} \sim N(0, 1)$ $Z\sigma + n = X$
Then: $P(n-1.5\sigma < X < n + 1.5\sigma) = P(n-1.5\sigma < Z\sigma + n < n + 1.5\sigma)$
 $= P(-1.5\sigma < Z\sigma < 1.5\sigma)$
 $= P(-1.5 < Z < 1.5)$

4. Suppose that a fair, 6-sided die is rolled 1000 times. Approximate the probability that the number 6 appears between 150 and 200 times (inclusive).

Let
$$X \sim Bin(1000, \frac{1}{6})$$
 be the number of $6s$ rolled.
Then $E(X) = np = \frac{1000}{6}$ and $\sigma_X = \sqrt{np(1-p)} = \sqrt{1000(\frac{1}{6})(\frac{5}{6})} = \sqrt{\frac{5000}{36}} \approx 11.8$
Then X is approximately normal with $M = \frac{1000}{6}$ and $\sigma = 11.8$.
 $P(150 \in X \leq 200) \approx P(150 \in Y = 200) = 0.919$ Normal Approximation to
the Binomial
His is 0.926 where $Y \sim N(\frac{1000}{6}, 11.8)$ "good" when $np \ge 10$ and $n(1-p) \ge 10$

- 5. Let f(x) denote the standard normal pdf. Estimate f(1) using only the information in Table A.3 in the text. +6 be continued...
- 6. Let f(x) denote the pdf of the $N(\mu, \sigma)$ distribution. Show that the points of inflection lie at $x = \mu \pm \sigma$. (*Hint*: differentiate twice with respect to *x*.)