3. Let *X* have pdf $f_X(x) = \frac{x+1}{2}$ for $-1 \le x \le 1$. Find the density of $Y = X^2$.

So:
$$f_{Y}(\gamma) = \frac{d}{dy} F_{Y}(\gamma) = \frac{d}{dy} (\sqrt{\gamma}) = \frac{1}{2\sqrt{\gamma}} \quad \text{for } 0 \le \gamma \le 1$$

QUESTION: Given a pdf
$$f_x(x)$$
, how can we simulate random variables
with this density?
IDEA: Generate Unif $(0, 1)$ values and transform than... but what is the
transformation function?
Let $U \sim Unif (0, 1)$, so U has pdf $f_y(x) = 1$ for $O \le u \le 1$
Want a function $g(u)$ such that $X = g(U)$ has pdf $f_x(x)$.
Assume $g(u)$ is strictly incr, and apply the Transformation Theorem:
 $f_x(x) = f_U(h(x)) |h'(x)|$ where h is the inverse of g .
Simplify:
 $f_x(x) = h'(x)$ so $h(x)$ is the antiderivative of $f_x(x)$,
 $Or h(x) = F_x(x)$.
Thus, $g(x)$ is the inverse of $F_x(k)$, the cdf of X .
 $U = \frac{1}{V = G(u)} = \frac{1}{V = \frac{1}{V}} \frac{1}{V}$ for $0 \le x \le 2$ and 0 otherise. Write a program to
simulate values from this distribution.
(a) What is the cdf $F_x(x)$?
 $F_x(x) = \int_0^{\infty} (\frac{1}{V + \frac{1}{V}}) dt = \frac{x}{V} + \frac{3x^2}{16}$

(b) What is the inverse of
$$F_X(x)$$
?
 $u = \frac{x}{8} + \frac{3x^2}{16}$
 $\frac{16}{3}u = x^2 + \frac{2}{3}x + \frac{1}{9} - \frac{1}{9}$
 $\frac{16}{3}u = (x + \frac{1}{3})^2 - \frac{1}{9}$
 $\frac{16}{3}u = (x + \frac{1}{3})^2 - \frac{1}{9}$
 $\frac{16}{3}u = (x + \frac{1}{3})^2 - \frac{1}{9}$

(c) Write a program to simulate values from this distribution.

```
> uvals <- runif(100000)
> hist(uvals)
> xvals <- sqrt(16*uvals/3 + 1/9) - 1/3
> hist(xvals)
```

3. Let $X \sim \text{Exp}(\lambda)$. Write a program to simulate values of X.

4. Can you think of distributions that would be impossible to simulate using the inverse CDF method?

```
• might be impossible to write a formula for the cdf -eg. Normal cdf
• might be impossible to write a formula for the inverse of the cdf
```