Math 262-6 November 2019
3. Let X have pdf $f_{X}(x)=\frac{x+1}{2}$ for $-1 \leq x \leq 1$. Find the density of $Y=X^{2}$.

CDF method:

$$
\begin{aligned}
F_{y}(y) & =P(Y \leq y)=P\left(X^{2} \leq y\right) \\
& =P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =\int_{-\sqrt{y}}^{\sqrt{y}} f_{x}(x) d x=\int_{-\sqrt{y}}^{\sqrt{y}} \frac{x+1}{2} d x \\
& =\left[\frac{x^{2}}{4}+\frac{x}{2}\right]_{-\sqrt{y}}^{\sqrt{y}}=\left(\frac{y}{4}+\frac{\sqrt{y}}{2}\right)-\left(\frac{y}{4}+\frac{\sqrt{y}}{2}\right) \\
F_{y}(y) & =\sqrt{y}
\end{aligned}
$$

So: $\quad f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y}(\sqrt{y})=\frac{1}{2 \sqrt{y}}$ for $0 \leq y \leq 1$

1. Let $X \sim N(0,1)$ and $Y=X^{2}$. What is the distribution of Y ?

Now, $X \in \mathbb{R}$ so $Y \in[0, \infty)$.
Find the cd of Y.
For $y \geq 0$:

$$
[\text { FTC: }
$$

$$
\begin{aligned}
& F_{y}(y)=P(Y \leq y)=P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& F_{Y}(y)=\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
\end{aligned}
$$

$$
\text { So } f_{y}(y)=\frac{d}{d y} F_{y}(y)=\frac{d}{d y} \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=\frac{1}{\sqrt{2 \pi}} e^{-\frac{y}{2}} \cdot \frac{1}{2 \sqrt{y}}-\frac{1}{\sqrt{2 \pi}} e^{-y / 2} \cdot \frac{-1}{2 \sqrt{y}}
$$

$$
f_{y}(y)=\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{2 \sqrt{y}}\left(e^{-y / 2}+e^{-y / 2}\right) \quad \text { so } \quad f_{y}(y)=\frac{1}{\sqrt{2 \pi y}} e^{-y / 2} \text { for } y \geq 0
$$

This is a Gamma density function with $\alpha=\frac{1}{2}$ and $\beta=2$.
This is also called the chi-square distribution with 1 degree of freedom.

QUESTION: Given a pdf $f_{x}(x)$, how can we simulate random variables with this density?
IDEA: Generate Unit $[0,1]$ values and transform them... but what is the transformation function?

Let $U \sim U_{\text {ni }}[0,1)$, so U has pdt $f_{0}(u)=1$ for $0 \leq u<1$
Wart a function $g(u)$ such that $X=g(U)$ has pdf $\underbrace{f_{x}(x)}$,
Assume $g(u)$ is strictly incs, and apply the Trusformation Theorem:
$f_{x}(x)=\underbrace{f_{v}(h(x)}_{v}|\underbrace{h^{\prime}(x)}|$ where h is the inverse of g. "h'>0 since g incr, so is h
simplify:
$f_{x}(x)=h^{\prime}(x)$ so $h(x)$ is the antiderivative of $f_{x}(x)$, or $h(x)=F_{x}(x)$.

Thus, $g(x)$ is the inverse of $F_{x}(x)$, the cdt of X.

This is the same as the method from chapter 2!
2. Let X have density given by $f_{X}(x)=\frac{1}{8}+\frac{3}{8} x$ for $0 \leq x \leq 2$ and 0 otherise. Write a program to simulate values from this distribution.
(a) What is the $\operatorname{cdf} F_{X}(x)$?

$$
F_{x}(x)=\int_{0}^{x}\left(\frac{1}{8}+\frac{3}{8} t\right) d t=\frac{x}{8}+\frac{3 x^{2}}{16}
$$

(b) What is the inverse of $F_{X}(x)$?

$$
\begin{aligned}
u & =\frac{x}{8}+\frac{3 x^{2}}{16} \\
\frac{16}{3} u & =x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9} \\
\frac{16}{3} u & =\left(x+\frac{1}{3}\right)^{2}-\frac{1}{9}
\end{aligned} \quad\left\{\begin{array}{r}
\frac{16}{3} u+\frac{1}{9}=\left(x+\frac{1}{3}\right)^{2} \\
\sqrt{\frac{16}{3} u+\frac{1}{9}}=x+\frac{1}{3} \\
x=\sqrt{\frac{16}{3} u+\frac{1}{9}}-\frac{1}{3}
\end{array}\right.
$$

(c) Write a program to simulate values from this distribution.

```
> uvals <- runif(100000)
> hist(uvals)
> xvals <- sqrt(16*uvals/3 + 1/9) - 1/3
> hist(xvals)
```

3. Let $X \sim \operatorname{Exp}(\lambda)$. Write a program to simulate values of X.
X has $p d f \quad \lambda e^{-\lambda x}$ and $c d f \quad F_{x}(x)=1-e^{-\lambda x} \quad \begin{aligned} & >\text { urals }<-\operatorname{runif}(100000)\end{aligned}$
Invert: $u=1-e^{-\lambda x}$ > hist(xvals)

$$
\begin{aligned}
& e^{-\lambda x}=1-u \\
& -\lambda x=\ln (1-u)
\end{aligned}
$$

$$
x=\frac{-1}{\lambda} \ln (1-u)
$$

4. Can you think of distributions that would be impossible to simulate using the inverse CDF method?

- might be impossible to write a formula for the cdf -eg. Normal coif
- might be impossible to write a formula for the inverse of the caff

