MGFs and SUMS of RVS

If X and Y are independent rvs and $W=X+Y$, then

$$
M_{W}(t)=M_{X}(t) M_{Y}(t)
$$

why?

$$
M_{w}(t)=E\left(e^{t w}\right)=E\left(e^{t(X+Y)}\right)=E\left(e^{t x} e^{t Y}\right)=E\left(e^{t x}\right) E\left(e^{t Y}\right)=M_{x}(t) M_{r}(t)
$$

more generally: if $W=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}+b, \quad \geqslant$ generalizes

$$
\text { then } \left.M_{w}(t)=e^{b t} M_{x_{1}}\left(a_{1} t\right) M_{x_{2}}\left(a_{2} t\right) \cdots M_{x_{1}}\left(a_{n} t\right)\right\} M_{0 x+b}(t)=e^{b t} M_{x}(a t)
$$

3. Let $X \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Bin}\left(n_{2}, p\right)$, and X and Y are independent.
(a) What do you think is the distribution of $X+Y$?

$$
\begin{aligned}
& X+Y \text { counts successes in a total of } n_{1}+n_{2} \text { trials, pork. of success } \\
& \text { is } p \text { for each trial. } \\
& \text { so } X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)
\end{aligned}
$$

(b) Use mgfs to find the distribution of $X+Y$.

$$
\begin{gathered}
M_{x}(t)=\left(1-p+p e^{t}\right)^{n_{1}} \quad \text { and } \quad M_{y}(t)=\left(1-p+p e^{t}\right)^{n_{2}} \\
M_{x+y}(t)=M_{x}(t) M_{y}(t)=\left(1-p+p e^{t}\right)^{n_{1}}\left(1-p+p e^{t}\right)^{n_{2}}=\underbrace{\left(1-p+p e^{t}\right)^{n_{1}+n_{2}}} \\
\text { This is the mg for } \operatorname{Bin}\left(n_{1}+n_{2}, p\right) \text {. }
\end{gathered}
$$

1. Let X and Y have joint density $f(x, y)=\frac{1}{2}$ for $0 \leq x \leq y \leq 2$.
(a) Suppose you know that $X=x_{0}$. What is then the density of Y ? If $X=x_{0}$ is fixed, then $Y \sim U_{n i f}\left[x_{0}, 2\right]$.

$$
\text { Then } \underbrace{f_{Y \mid X}\left(y, \mid x_{0}\right)}_{\text {conditional density of } Y \text { given } X=x_{0}}=\frac{1}{2-x_{0}} \text { for } x_{0} \leq y \leq 2 .
$$

(b) In part (a), you found the conditional density $f_{Y \mid X}\left(y \mid x_{0}\right)$. How does this relate to the joint density $f(x, y)$ and the marginal density $f_{X}(x)$?

$$
\text { Marginal density of } X: f_{x}(x)=\int_{x}^{2} f(x, y) d y=\int_{x}^{2} \frac{1}{2} d y=\left.\frac{y}{2}\right|_{x} ^{2}=\frac{2}{2}-\frac{x}{2}=\frac{2-x}{2}
$$

$$
\text { for } 0 \leq x \leq 2
$$

Observe: $\frac{f(x, y)}{f_{X}(x)}=\frac{\frac{1}{2}}{\frac{2-x}{2}}=\frac{1}{2-x}=f_{Y \mid X}(y / x)$
DEFINITION OF CONDITIONAL PDF: $f_{Y \mid x}(y \mid x)=\frac{f(x, y)}{f_{x}(x)}$ Recall conditional probability of events: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ Jsimilan!
(c) If $X=\frac{1}{2}$, then what is the probability that $Y \leq 1$?

$$
\begin{aligned}
& P\left(Y \leq 1 \left\lvert\, X=\frac{1}{2}\right.\right)=\int_{\frac{1}{2}}^{1} f_{Y \mid X}\left(y \left\lvert\, \frac{1}{2}\right.\right) d y=\int_{\frac{1}{2}}^{1} \frac{1}{2-\frac{1}{2}} d y=\int_{\frac{1}{2}}^{1} \frac{2}{3} d y=\frac{1}{3} \\
& \text { NOTE: } \left.\frac{1}{2} \leq Y \leq 1\right]^{j}
\end{aligned}
$$

(d) What is the expected value of Y given that $X=x_{0}$?

$$
\begin{aligned}
E\left(Y \mid X=x_{0}\right) & =\int_{x_{0}}^{2} y \cdot f_{Y \mid X}\left(y \mid x_{0}\right) d y=\int_{x_{0}}^{2} y \cdot \frac{1}{2-x_{0}} d y=\left.\frac{y^{2}}{2} \cdot \frac{1}{2-x_{0}}\right|_{y=x_{0}} ^{y=2} \\
& =\frac{4}{2} \cdot \frac{1}{2-x_{0}}-\frac{x_{0}^{2}}{2} \cdot \frac{1}{2-x_{0}}=\frac{4-x_{0}^{2}}{2\left(2-x_{0}\right)}=\frac{2+x_{0}}{2} \text { for } x_{0} \leq y \leq 2
\end{aligned}
$$

CONDITIONAL EXPECTATION of Y given $X=x_{0}$:

$$
\mu_{Y \mid X=x_{0}}=E\left(Y \mid X=x_{0}\right)=\int_{-\infty}^{\infty} y \cdot f_{Y \mid X}\left(y \mid x_{0}\right) d y
$$

(e) What is the variance of Y given that $X=x_{0}$?

CONDITIONAL VARIANCE: $\operatorname{Var}\left(Y \mid X=x_{0}\right)=E\left(Y^{2} \mid X=x_{0}\right)-E\left(Y \mid X=x_{0}\right)^{2}$

$$
\begin{aligned}
& E\left(Y^{2} \mid X=x_{0}\right)=\int_{x_{0}}^{2} y^{2} f_{Y \mid X}\left(y \mid x_{0}\right) d y=\int_{x_{0}}^{2} y^{2} \frac{1}{2-x_{0}} d y=\left.\frac{y^{3}}{3} \cdot \frac{1}{2-x_{0}}\right|_{x_{0}} ^{2}=\frac{4+2 x_{0}+x_{0}^{2}}{3} \\
& \operatorname{Var}\left(Y \mid X=x_{0}\right)=\frac{4+2 x_{0}+x_{0}^{2}}{3}-\left(\frac{2+x_{0}}{2}\right)^{2}=\frac{\left(2-x_{0}\right)^{2}}{12}
\end{aligned}
$$

We didn't do \#2 in class, but it's here as another example
2. The joint pdf of X and Y is $f(x, y)=3 x$, for $0 \leq y \leq x \leq 1$.
(a) What is the conditional distribution of Y given $X=x$?

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{x} 3 x d y=\left.3 x y\right|_{y=0} ^{y=x}=3 x^{2} \text { for } 0 \leq x \leq 1 \\
& f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{3 x}{3 x^{2}}=\frac{1}{x} \text { for } 0 \leq y \leq x
\end{aligned}
$$

(b) What is $E(Y \mid X=x)$?

$$
E(Y \mid X=x)=\int_{0}^{x} y \cdot \frac{1}{x} d y=\left.\frac{1}{x} \cdot \frac{y^{2}}{2}\right|_{y=0} ^{y=x}=\frac{x}{2}
$$

(c) What is $\operatorname{Var}(Y \mid X=x)$?

$$
\begin{aligned}
& E\left(Y^{2} \mid X=x\right)=\int_{0}^{x} y^{2} \cdot \frac{1}{x} d y=\left.\frac{1}{x} \cdot \frac{y^{3}}{3}\right|_{y=0} ^{y=x}=\frac{x^{2}}{3} \\
& \operatorname{Var}(Y \mid X=x)=\frac{x^{2}}{3}-\left(\frac{x}{2}\right)^{2}=\frac{x^{2}}{3}-\frac{x^{2}}{4}=\frac{x^{2}}{12}
\end{aligned}
$$

(d) Are X and Y independent?

No, because the possible values of I depend on X.

