LAW OF TOTAL EXPECTATION

$$
E(E(Y \mid X))=E(Y)
$$

outside: expected
value of a function
inside: conditional expectation with respect of X to the distribution of Y (X "fixed")
example: X and I as on Friday: $f(x-y)=\frac{1}{2}$ for $0 \leq x \leq y \leq 2$.
First: $E\left(Y \mid X=x_{0}\right)=\frac{2+x_{0}}{2}$, equivalently, $E(Y \mid X)=\frac{2+X}{2}$ a function of the rv X
Then: $E(E(Y \mid X))=E\left(\frac{2+X}{2}\right)=\int_{0}^{2} \frac{2+x}{2} f_{x}(x) d x=\int_{0}^{2} \frac{2+x}{2} \cdot \frac{2-x}{2} d x=\frac{4}{3}$ Find $E(Y)$ from $f_{y}(y)=\int_{0}^{y} \frac{1}{2} d x=\frac{y}{2}$ for $0 \leq y \leq 2$

$$
E(Y)=\int_{0}^{2} y \frac{y}{2} d y=\int_{0}^{2} \frac{y^{2}}{2} d y=\frac{4}{3}
$$

Law of total variance

$$
\operatorname{Var}(Y)=\operatorname{Var}(E(Y \mid X))+E(\operatorname{Var}(Y \mid X))
$$

0 . The number of eggs N found in a nest of a certain species of turtle has a Poisson distribution with mean λ. Each egg has a probability p of being viable, and this event is independent from egg to egg. Find the mean and variance of the number of viable eggs per nest.
rvs: $\quad N \sim \operatorname{Poisson}(\lambda)$

$$
Y=\text { number of viable eggs } \sim B_{\text {in }}(N, p)
$$

mean of $Y: \quad E(Y)=E(E(Y \mid N))=E\left(N_{p}\right)=p E(N)=p \lambda$

$$
\text { Variance: } \quad \begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}(E(Y \mid N))+E(\operatorname{Var}(Y \mid N)) \\
& =\operatorname{Var}(N p)+E(N p(1-p)) \\
& =p^{2} \operatorname{Var}(N)+p(1-p) E(N) \\
& =p^{2} \lambda+p(1-p) \lambda=p^{2} \lambda+p \lambda-p^{2} X=p \lambda
\end{aligned}
$$

1. Sketch the density of the sum of two iii Unif[0,1] random variables. How about three? Four? More?

2. Use \mathbf{R} to simulate 10,000 samples from the distribution Enif[$[, 1]$:
hist(runif(10000))

What is the shape of the histogram?
approximately uniform
3. Now simulate 10,000 averages, each of 30 samples from Unif[0,1]:
means <- replicate(10000, mean(runif(30)))
hist(means, breaks =30)
What is the shape of the histogram?

$$
\begin{aligned}
& \text { approximately normal! } \\
& \text { That is: if } Y \text { is the sum of } 30 \text { iid Unif }[0,1] \text { random variables, } \\
& \text { then the distribution of } Y \text { is approximately normal. }
\end{aligned}
$$

4. Repeat \#2 and \#3 above with a different distribution. That is, replace runif with a distribution of your choice. What do you observe?
If Y is the sum of 30 iid random variables from any of the distributions
we have studied, then the distribution of Y is approximately normal.
