From last time:
(weak) Law of Large Numbers
If $X_{1}, X_{2}, \ldots, X_{n}$ are iid rvs with mean $\mu<\infty$, and $\bar{X}_{n}=\frac{X_{1}+\ldots+X_{n}}{n}$, then for any $\varepsilon>0, \quad \lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right| \geq \varepsilon\right)=0$.
INTERPRETATION: As $n \rightarrow \infty$, it's increasingly unlikely that \bar{X}_{n} will differ from μ by ε.
4. Suppose you flip a fair coin lots of times. What does the Law of Large Numbers say about the numbers of heads and tails you will observe?

Choose $\varepsilon>0$. There is a high probability that the observed proportion of heads will be within ε of $\frac{1}{2}$, and this probability goes to 1 as number of coin flips incr.
5. Suppose that a certain casino game costs $\$ 1$ to play, and the expected winnings per game are $\$ 0.98$. What does the Law of Large Numbers say about your winnings if you play the game lots of times?

In the long run, it's almost guaranteed that you will lose
$2 n$ cents, where n is the number of games you play.

Transformations of Joint Distributions

Today: X_{1} and X_{2} are jointly distributed, and $Y=f\left(X_{1}, X_{2}\right)$. What is the distribution of Y?

1. Let X_{1} and X_{2} have joint density $f\left(x_{1}, x_{2}\right)=3 x_{1}$, for $0 \leq x_{2} \leq x_{1} \leq 1$. Let $Y=X_{1}-X_{2}$. Use the following steps to find the density of Y.
(a) Identify the possible values of Y.

$$
\begin{aligned}
& 0 \leqslant Y \leqslant 1 \\
& \text { Since } Y=x_{1}-x_{2} \text { and } 0 \leqslant x_{2} \leqslant x_{1} \leqslant 1
\end{aligned}
$$

(b) Find the region in the $x_{1} x_{2}$-plane where $Y=y$.

Let $y \in[0,1]$.

$$
\begin{aligned}
Y & =y \\
X_{1}-X_{2} & =y_{q_{\text {fixed }}} \quad \text { so } \quad X_{2}=X_{1}-y
\end{aligned}
$$

(c) Find the region R in the $x_{1} x_{2}$-plane where $Y \leq y$.
R is shaded green in the diagram
(d) Find the $\operatorname{cdf} F_{Y}(y)$ by integrating the joint density of X_{1} and X_{2} over the region R.

$$
c d f: \quad F_{Y}(y)=P(Y \leq y)=P\left(X_{1}-X_{2} \leq y\right)=\iint_{R} f\left(x_{1}, x_{2}\right) d A
$$

$$
=1-\iint_{S} f\left(x_{1}, x_{2}\right) d A=1-\int_{y}^{1} \int_{0}^{x_{1}-y} 3 x_{1} d x_{2} d x_{1}
$$

$$
F_{Y}(y)=\frac{3}{2} y-\frac{1}{2} y^{3}
$$

(e) Differentiate $F_{Y}(y)$ to obtain the density $f_{Y}(y)$.

$$
f_{Y}(y)=\frac{d}{d y}\left(F_{Y}(y)\right)=\frac{d}{d y}\left(\frac{3}{2} y-\frac{1}{2} y^{3}\right)=\frac{3}{2}-\frac{3}{2} y^{2} \text { for } 0 \leq y \leq 1
$$

2. The joint density of X_{1} and X_{2} is given by $f\left(x_{1}, x_{2}\right)=\frac{1}{8} x_{1} e^{-\left(x_{1}+x_{2}\right) / 2}$ for $x_{1}>0$ and $x_{2}>0$.

Find the density function for the ratio $Y=\frac{X_{2}}{X_{1}}$.
(a) Identify the possible values of Y.

$$
Y=\frac{X_{2}}{X_{1}} \quad Y>0
$$

(b) Find the region in the $x_{1} x_{2}$-plane where $Y=y$.

$$
\text { Fix } y>0 \text {. Then } Y=\frac{X_{2}}{X_{1}}=y
$$

when $X_{2}=X_{1} y$ line through the origin with slope y
(c) Find the region R in the $x_{1} x_{2}$-plane where $Y \leq y$.

$$
I \leq y \quad \text { when } \quad X_{2} \leq X y
$$

(d) Find the $\operatorname{cdf} F_{Y}(y)$ by integrating the joint density of X_{1} and X_{2} over the region R.

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P\left(\frac{x_{2}}{x_{1}} \leq y\right)=\iint_{R} f\left(x_{1}, x_{2}\right) d A \\
& =\int_{0}^{\infty} \int_{0}^{x_{1} y} \frac{1}{8} x_{1} e^{-\left(x_{1}+x_{2}\right) / 2} d x_{2} d x_{1}=\frac{y^{2}+2 y}{(1+y)^{2}} \text { for } y>0
\end{aligned}
$$

(e) Differentiate $F_{Y}(y)$ to obtain the density $f_{Y}(y)$.

$$
f_{y}(y)=\frac{d}{d y}\left[\frac{y^{2}+2 y}{(1+y)^{2}}\right]=\frac{2}{(1+y)^{3}} \text { for } \quad y>0
$$

We didn't do the next problem in class, but it's here as another example:
3. Let X_{1} and X_{2} be uniformly distributed over the region of the $x_{1} x_{2}$-plane defined by $0 \leq x_{1}, 0 \leq x_{2}$, and $x_{1}+x_{2} \leq 1$. Let $Y=X_{1}+X_{2}$. Find the density of Y.

$$
O \leq Y \leq 1
$$

For $y \in[0,1]: \quad Y=X_{1}+X_{2}=y \Rightarrow X_{2}=y-X_{1}$

$$
Y \leq y \Rightarrow X_{2} \leq y-X_{1}
$$

$x_{2}=y-x_{1}$
Then, $F_{Y}(y)=P\left(X_{2} \leq y-X_{1}\right)=\iint_{R} f\left(x_{1}, x_{2}\right) d A=\iint_{R} 2 d A=2 \cdot \operatorname{Area}(R)=y^{2}$
Thus: $f_{Y}(y)=\frac{d}{d y} F_{y}(y)=\frac{d}{d y}\left(y^{2}\right)=2 y$ for $0 \leq y \leq 1$.

