BINOMIAL DISTRIBUTION
$X \sim \operatorname{Bin}(n, p)$ means X is a binomial rv that counts the number of successes in n trials, each with success probability p
pms: $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad$ for $\quad x=0,12, \ldots, n$
mean: $E(X)=x p \quad$ variance: $\operatorname{Var}(X)=x p(1-p)$

Poisson Process
A sequence of discrete occurrences where the average number of occurrences in a fixed time interval is known, but the exact timing of occurrences is random.

POISSON DISTRIBUTION
$X \sim \operatorname{Poisson}(\mu)$ if X counts the number of occurrences in a Poisson process with mean μ occurrences per time interval. pup: $P(X=x)=e^{-\mu} \frac{\mu^{x}}{x!}$ for $x=0,1,2,3, \ldots$
mean: $E(X)=\mu \quad$ variance: $\operatorname{Var}(X)=\mu$
check: does it sum to 1 ?
Recall:

$$
\begin{aligned}
\sum_{x=0}^{\infty} P(X=x) & =\sum_{x=0}^{\infty} e^{-\mu} \frac{\mu^{x}}{x!}=e^{-\mu} \sum_{x=0}^{\infty} \frac{\mu^{x}}{x!} \quad \quad e^{y}=\sum_{k=0}^{\infty} \frac{y^{k}}{k!} \\
& =e^{-\mu} e^{\mu}=1
\end{aligned}
$$

