BINOMIAL DISTRIBUTION
$X \sim \operatorname{Bin}(n, p)$ means X is a binomial rv that counts the number of successes in n trials, each with success probability p
pmf: $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad$ for $\quad x=0,12, \ldots, n$
mean: $E(X)=x p \quad$ variance: $\operatorname{Var}(X)=x p(1-p)$

POISSON DISTRIBUTION
$X \sim \operatorname{Poisson}(\mu)$ if X counts the number of occurrences in a Poisson process with mean μ occurrences per time interval.
pmf: $P(X=x)=e^{-\mu} \frac{\mu^{x}}{x!} \quad$ for $x=0,1,2,3, \ldots$
mean: $E(X)=\mu \quad$ variance: $\operatorname{Var}(X)=\mu$

Binomial (n, p) is approximately Poisson $(n p)$
If n is large and p is small, then $b(x ; n, p) \approx p(x ; \mu)$ with $\mu=n p$. binomial mf $9 \quad \tau$ Poisson pouf
This approximation is good if $n \geq 100$ and $n p \leq 10$.
Historically, the binomial pmf was hard to compute, so the Poisson distribution was useful for approximating binomial probabilities.

