Hypergeometric Distribution
A set contains N items, M of which are "successes" and the rest are "failures." A sample of n items is selected without replacement (each subset of size n is equally likely to be chosen). Let X be the number of successes in the sample.
Then $X \sim$ Hyper geometric (n, M, N).

mean: $E(X)=n \cdot \frac{M}{N} \quad$ variance: $\operatorname{Var}(X)=\frac{N-n}{N-1} \cdot n \cdot \frac{M}{N}\left(1-\frac{M}{N}\right)$
negative binomial distribution
An experiment consists of a sequence of independent trials. Each trial results in either "success" or "failure." The probability of success is p for each trial. The experiment stops when a certain number, r, of successes have occurred. Let X be the number of trials necessary to achieve r successes.

Then $X \sim$ Negative Binomial (r, p). mean: $E(X)=\frac{r}{p}$
pm: $\quad P(X=x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r} \quad$ variance: $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

If $r=1$, then $X \sim \operatorname{Geometric}(p) \quad E(X)=\frac{1}{p}$ pm: $P(X=x)=(1-p)^{x-1} p \quad$ variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

