From last Time: Geometric Distribution
$X \sim \operatorname{Geometric}(p)$ means that X counts the number of trials until the first success, where each trial is successful with probability p.
pm: $P(X=x)=(1-p)^{x-1} p$
geometric tail probability: $P(X>k)=(1-p)^{k}$
Memoryless Property
For $X \sim \operatorname{Geometric}(p)$ and integers $0<s<t$,

$$
P(X>t \mid X>s)=P(X>t-s)
$$

The waiting time until the next success does not depend on how many failures you have already seen.

Moment -Generating Functions
The mgr of discrete random variable X is:

$$
M_{x}(t)=E\left(e^{t x}\right)=\sum_{x} \underbrace{e^{t x}}_{\text {values }} \underset{\text { prdaciltaies }}{P}(X=x)
$$

As a power series:

$$
M_{x}(t)=1+E(X) t+E\left(X^{2}\right) \frac{t^{2}}{2}+E\left(X^{3}\right) \frac{t^{3}}{6}+\cdots
$$

To find $E\left(X^{r}\right)$, differentiate $M_{X}(t) r$ times and evaluate at $t=0$.

EXAMPLE: $X \sim P_{\text {poisson }}(\mu) \quad P(X=k)=e^{-\mu} \frac{\mu^{k}}{k!}$

$$
\begin{aligned}
M_{x}(t)=E\left(e^{t x}\right) & =\sum_{k=0}^{\infty} e^{t k} e^{-\mu} \frac{\mu^{k}}{k!} \\
& =e^{-\mu} \sum_{k=0}^{\infty} e^{t k} \frac{\mu^{k}}{k!}=e^{-\mu} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\left(x^{n}\right.}{n!} \\
& =e^{-\mu} \cdot e^{\mu e^{t}}=e^{\mu\left(e^{t}-1\right)}
\end{aligned}
$$

observe: $\quad M_{x}(0)=e^{u\left(e^{0}-1\right)}=e^{0}=1=E\left(X^{0}\right)$

$$
\begin{aligned}
& M_{x}^{\prime}(t)=e^{\mu\left(e^{t}-1\right)}\left(\mu e^{t}\right) \\
& M_{x}^{\prime}(0)=e^{\mu\left(e^{0}-1\right)}\left(\mu e^{0}\right)=e^{0}(\mu \cdot 1)=\mu=E\left(X^{\prime}\right) \\
& M_{x}^{\prime \prime}(0)=E\left(X^{2}\right) \\
& \text { etc. }
\end{aligned}
$$

geometric series formulas

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\cdots=\frac{a}{1-r} \\
& \sum_{n=0}^{m} a r^{n}=a+a r+a r^{2}+\cdots+a r^{m}=\frac{a\left(1-r^{m+1}\right)}{1-r}
\end{aligned}
$$

