Two Discrete Random Variables
For discrete rvs X and Y :
Joint Mass Function: $p(x, y)=P(X=x, Y=y)$
Marginal Mass Functions:

$$
\begin{aligned}
& p_{X}(x)=\sum_{y} p(x, y) \\
& p_{Y}(y)=\sum_{x} p(x, y)
\end{aligned}
$$

X and Y are INDEPENDENT if $p(x, y)=p_{x}(x) p_{Y}(y)$.

Two Continuous Random Variables
For continuous rus X and Y :
Joint Density function: $f(x, y)$ such that for any
set A in $\mathbb{R}^{2}, \quad P((X, Y) \in A)=\iint_{\Lambda} f(x, y) d A$

$$
\begin{aligned}
P(a & \leq X \leq b, c \leq Y \leq b)=P((X, Y) \in A) \\
& =\int_{a}^{b} \int_{c}^{a} f(x, y) d y d x=\iint_{A} f(x, y) d A
\end{aligned}
$$

Marginal Density functions: $f_{x}(x)=\int_{-\infty}^{\infty} f(x, y) d y$

$$
f_{y}(y)=\int_{-\infty}^{\infty} f(x, y) d x
$$

X and Y are INDEPENDENT if $f(x, y)=f_{x}(x) f_{r}(y)$.

