- 1. A cafeteria has three meal options: pizza, burgers, and salad bar. Three students each choose one option independently at random (equally likely to choose any option). Let *X* be the number (of the 3) who choose pizza, and let *Y* be the number who choose the salad bar.
- (a) What is the joint pmf of *X* and *Y*? What are the marginal pmfs of *X* and *Y*?

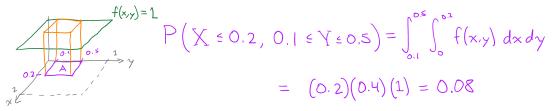
	joint pm	ıt:	χ			marginal pmf:
		0	1	2	3	$p_{r}(y)$
eg.: $p(0,0) = P\left(\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{27}\right) \cdot P\left(\frac{1}{2} \cdot \frac{1}{2} \cdot $	0	<u>1</u> 27	3 27	<u>3</u> 27	<u>1</u> 27	27
	y 1	3 27	6 27	3 27	0	<u>12</u> 27
	2	<u>3</u> 27	<u>3</u> 27	0	0	<u>6</u> 27
	3	1 2 7	0	0	0	1 27
marginal pr	$p_{x}(x)$	<u>8</u> 27	12 27	<u>6</u> 27	1 27	

(b) Are *X* and *Y* independent? Why or why not?

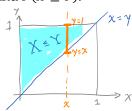
No, since knowledge of one affects the probabilities of the other.

- 2. Suppose a particle is randomly located in the square $0 \le x \le 1$, $0 \le y \le 1$. That is, if two regions within the square have equal area, then the particle is equally likely to be in either region. Let (X,Y) be the coordinates of the particle.
- (a) What is the joint density function of *X* and *Y*?

If Area (A) = Area (B), then the particle is equally likely to be in A or B.


Thus,
$$P((x,y) \in A) = k \cdot Area(A) = \iint_A f(x,y) dA$$

The joint density is then $f(x,y) = k$.


Since $\iint_0^x k \, dx \, dy = k = 1$, we have $f(x,y) = 1$ for $0 \le x \le 1$ and $0 \le y \le 1$.

2-D Uniform Distribution

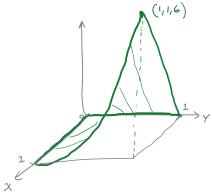
(b) Find $P(X \le 0.2, 0.1 \le Y \le 0.5)$.

(c) Find $P(X \leq Y)$.

P(
$$X = Y$$
) = $\iint_{A} 1 dA = \frac{1}{2}$

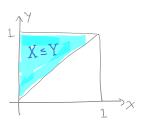
$$= \iint_{X} 1 dy dx$$

(d) Are X and Y independent? Why or why not?


Yes:
$$f(x,y) = f_x(x) f_y(y)$$
 for $0 = x = 1$, $0 = y = 1$

- 3. Let *X* and *Y* have joint pdf $f(x, y) = 6xy^2$ for $0 \le x \le 1$ and $0 \le y \le 1$.
- (a) Verify that f(x, y) is a joint pdf.

$$f(x,y) \ge 0 \qquad \text{for } 0 \le x \le 1, \ 0 \le y \le 1 \text{ and}$$


$$\int_{0}^{1} \int_{0}^{1} 6 x y^{2} dx dy = 6 \int_{0}^{1} x dx \int_{0}^{1} y^{2} dy$$

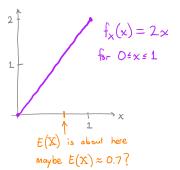
$$= 6 \left(\frac{1}{2}\right) \left(\frac{1}{3}\right) = 1$$

(b) What is $P(X \le Y)$?

$$P(X = Y) = \int_{0}^{1} \int_{X}^{1} 6 \times y^{2} dy dx = \int_{0}^{1} (2x - 2x^{4}) dx = 1 - \frac{2}{5} = \frac{3}{5}$$
$$\int_{X}^{1} 6 \times y^{2} dy = 2xy^{3} \Big|_{y=x}^{y=1} = 2x - 2x^{4}$$

(c) Find $f_X(x)$ and $f_Y(y)$.

$$f_X(x) = \int_0^1 6 x y^2 dy = 2x y^3 \Big|_{y=0}^{y=1} = 2x$$
 for $0 \le x \le 1$


$$f_{\gamma}(y) = \int_{0}^{1} 6xy^{2} dx = 3x^{2}y^{2}\Big|_{x=0}^{x=1} = 3y^{2}$$
 for $0 \le y \le 1$

(d) Are X and Y independent? Why or why not?

Yes:
$$f(x,y) = f_X(x) f_Y(y)$$

 $6xy^2 = (2x)(3y^2)$

$$6xy^2 = (2x)(3y^2)$$
 for $0 \le x \le 1$, $0 \le y \le 1$

(e) Sketch the marginal pdfs $f_X(x)$ and $f_Y(y)$. What would you estimate to be the means E(X) and E(Y)?

$$f_{Y}(y) = 2y^{2}$$
for $0 \le y \le 1$

$$E(Y) \text{ should be close to } 1$$

May be $E(Y) \approx \frac{7}{8}$?

(f) Compute E(X) and E(Y).

$$f_{x}(x) = 2x$$
, $0 \le x \le 1$, so $E(X) = \int_{0}^{1} x \cdot 2x \, dx = \frac{2}{3} x^{3} \Big|_{0}^{1} = \frac{2}{3}$
 $f_{y}(y) = 3y^{2}$, $0 \le y \le 1$, so $E(Y) = \int_{0}^{1} y \cdot 3y^{2} \, dy = \frac{3}{4} y^{4} \Big|_{0}^{1} = \frac{3}{4}$

(g) Compute E(X + Y) in two different ways.

I.
$$E(X+Y) = E(X) + E(Y)$$
 \leftarrow linearity of expected value
$$E(X+Y) = E(X) + E(Y) = \frac{2}{3} + \frac{3}{4} = \frac{17}{12}$$

II.
$$E(X+Y) = \int_0^1 (x+y) 6xy^2 dy dx$$
 = expected value of a function of X and Y
$$E(X+Y) = \int_0^1 \int_0^1 (x+y) 6xy^2 dy dx = \boxed{\frac{17}{12}}$$

(h) Now compute E(XY).

$$E(XY) = \int_{0}^{1} \int_{0}^{1} (xy) 6xy^{2} dy dx = \boxed{\frac{1}{2}}$$
Note that for this problem, $E(XY) = E(X)E(Y)$.

(i) What are the values of Cov(X, Y) and Corr(X, Y)? (Try to do this without evaluating any more integrals.)

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{2} - \frac{2}{3} \cdot \frac{3}{4} = 0$$

 $Corr(X,Y) = 0$

- 4. Let *X* and *Y* have joint pdf f(x, y) = 3x + 3y for $0 \le x$, $0 \le y$, and $x + y \le 1$.
- (a) Sketch the joint pdf and verify that the volume underneath is 1.

We will do this on Thursday.

- (b) What values of *X* and *Y* are most likely? What values are not so likely?
- (c) Compute the following, using technology to evaluate integrals:
 - E(X + Y)
 - E(XY)
 - $\bullet E(X)$
 - E(Y)
- (d) What is Cov(X, Y)?