
edge contraction example

Now sum over all vertices of T of P_{s}

$$
5 \cdot t_{6}=\sum_{i=1}^{5}\left(\sum_{T \in \tau_{5}} \text { deg. of vertex } i \text { in } T\right)
$$

$$
=\sum_{T \in \tau_{5}} \sum_{\text {Sum of all degrees of vertices }}^{\sum_{i=1}^{5} \text { deg. of vertex } ; \text { in } T}
$$

is twice the number of edges and diagonals of T

$$
2(5 \text { edges }+2 \text { diego orals })=(7) 2
$$

$$
5 \cdot t_{6}=\sum_{T \in T_{s}} 14=14 \cdot t_{5}
$$

GENERALI2E: Now let $\phi: \tau_{n+2}$ to T_{n+1}
proof of number of triangulations of a convex \boldsymbol{n}-gan

$$
\begin{aligned}
t_{n+2} & =\sum_{T \in T_{\text {Tn 土 }}} \text { deg. of vertex } 1 \text { in } T \\
(n+1) \cdot t_{n+2} & =\sum_{i=1}^{n+1} \sum_{T \in T \text { Tnt }} \text { deg. of vertex }: \text { in } T \\
(n+1) \cdot t_{n+2} & =\sum_{T \in \tau_{n+1}}^{\sum_{i=1}^{n+1} \text { deg. of } i \text { in } T}
\end{aligned}
$$

$$
\uparrow_{\text {pup of }}^{\text {nival deg. of triangulation } T} T
$$

$$
\begin{aligned}
& \text { Criagolatios } \\
& \text { is } t_{n+1}
\end{aligned} 2((n+1)+(n-2))=2(2 n-1)
$$

$(n+1) t_{n+2}=2(2 n-1) t_{n+1}$ also $t_{3}=1$

$$
G t_{n+2}=\frac{2(2 n-1)}{n+1} t_{n+1} \quad \text { also: } t_{n+1}=\frac{2(2 n-3)}{n} t_{n}
$$

Then: $\quad t_{n+2}=\frac{2(2 n-1)}{(n+1)} \cdot \frac{2(2 n-3)}{(n)} \cdot \frac{2(2 n-5)}{(n-1)} \cdot \frac{2(2 n-7)}{(n-2)} \cdot \cdots \cdot \frac{2 \cdot 3}{(3)} \frac{1}{3} \cdot \frac{2}{2}$

Tetrahedron

$$
\begin{aligned}
& =\frac{1}{(n+1)!} \cdot \frac{2 n \cdot(2 n-1) \cdot(2(n-1)) \cdot(2 n-3) \cdot(2(n-2)) \cdots(2 \cdot 2) 3 \cdot 2}{n \cdot \frac{(n-1)}{(n-2) \cdots 2}}
\end{aligned}
$$

