

		THE VOLUMES OF TWO			
	In two letters to Ge	rling, Gauss * expresses	his regret that		
	of exhaustion, i. e., in	olid geometry depend up n modern phraseology, u	ipon the axiom		
		n the axiom of Archim the theorem of Euclid,			
	— pyramids of equal alti Now the analogous pr	itudes are to each other roblem in the plane has	as their bases. been solved.†		
Hilbert's	Gerling also succeeded	d in proving the equalit ra by dividing them i	y of volume of		
3ed bupy	parts. Nevertheless,	it seems to me probable the theorem of Euclid	that a general		
((0,00)	is impossible, and it	should be our task to	give a rigor-		
	soon as we succeede	d in specifying two tetros which can in no way be s	ahedra of equal		
	gruent tetrahedra, and	which cannot be combined	l with congruent		
	into congruent tetrahedr	olyhedra which themselves ra.‡	coma de spin up		
1903;	Dehn showed	anshe is no			
ex	ample: cube an	d o regulor te	trohedron are	1:-0	
	ample: Cube an	scissors conarue	p _A †	section 1.5	
		T T			
ke		ent — a functio		lra	
	which	's unchanged by	dissection	and	
	rearra	ng enent		/	
10/-	: Sydler showed	+6+ ·c P		the	
1,162					
	some volume a		arient, Then	they	
	are scissors co	ong roent			