A region R is CONVEX if, for any two points a and b in R, the line segment $a b$ is in R.
Let S be a set of points. The CONVEX HULL of S, denoted conv(S), is the intersection of all convex regions containing S.

Application of Convex Hulls

- Collision detection (eeg. robot motion planning)

- geographic information systems
- Optimization problems (e.g. simplex algorithm)
- geometric modeling
eg. a Bézier curve lies within the convex hull of its control points

Question: Given coordinates of a set of points S in the plane, how would you program a computer to find conv(s)?
consecutive
IDEA: Points a and b are hull vertices if and only if all other points of S lie on the same side of edge $\overline{a b}$.

ALGORITHM:

3 nested loops

$$
h u l l=\{ \}
$$

for point a in S :
for point $b \neq a$ in S :
if all points $c \neq a, b$ in S are left of $\overrightarrow{a b}$: append edge $\overline{a b}$ to hull
return hull
How to determine "left of"?
idea!

Is c left of $\overrightarrow{a b}$? $\vec{\omega}=\left\langle c_{1}-a_{1}, c_{2}-a_{2}, 0\right\rangle$
$\left(\begin{array}{c}\left.a, a_{2}\right)\end{array}\right.$
$\vec{v}=\left\langle b_{1}-a_{1}, b_{2}-a_{2}, 0\right\rangle$
cross product: $\vec{v} \times \vec{w}=\left\langle 0,0, \frac{\left.\left(b_{1}-a_{1}\right)\left(c_{2}-a_{2}\right)-\left(b_{2}-a_{2}\right)\left(c_{1}-a_{1}\right)\right\rangle}{\text { let this be } Q}\right.$
If $Q>0$, then c is left of $\overrightarrow{a b}$.
If $Q<0$, then C is right of $\overrightarrow{a b}$.
If $Q=0$, then c is collinear with $\overrightarrow{a b}$.
$\int 3 D$

not greater than $c \cdot n^{3}$ for some constant c (and large n).

Question: Can we do better?
Can we compute cav (S) more efficiently?

