Minkowski sums
If $A$ and $B$ are convex polygons with $m$ and $n$ vertices, respectively, then $A \oplus B$ has $\leq m+n$ vertices.

ALGORITHM: Idea: traverse $A$ and $B$ simultaneosity, adding vertices that are extreme in the same direction.
 $m \in n$ vertices, if $A$ and $B$ don't share parallel edges
pseudocode: minkouskiSum $(A, B)$ : \#A,B specified by $m=\operatorname{len}(A) ; \quad i=1$ vertices, in CCW order, $n=\operatorname{len}(B) ; j=1$ from the lowest vertex
while $i \leq m$ or $j \leq n$ :
add vertex $a_{i}+b_{j}$ to obtain a vertex of $A O B$
complexity: $\alpha=$ angle of $\overline{a_{i} a_{i+1}}$ with positive $x$-axis $\beta=$ angle of $\overline{b_{j} b_{j+1}}$ with positive $x$-axis if $\alpha \leq \beta$, then it t if $\beta \leq \alpha$, then $j++$

NONCONVEX POLYGONS
case 1: A nonconvex, in vertices
decomposition
$B$ convex, $n$ vertices
idea: Triangulate $A$ into $t_{1}, t_{2}, \ldots, t_{m-2}$
The:

$$
A \oplus B=\bigcup_{i=1}^{M-2}\left(t_{i} \oplus B\right)
$$

$$
\begin{aligned}
& \text { in } A \oplus B \text { is not } \\
& \text { more than a constant }
\end{aligned}
$$

multiple of mn.

example:

$A B B$ has 6 varices
case 2: both $A$ and $B$ nonconvex $A$ has $m$ vertices, $B$ has $n$ vertices

The: $A \oplus B$ has $O\left(m^{2} n^{2}\right)$ vertices. see Figure 5.18 on page 138 in the text.

CURVE SHORTENING
motivation: Smooth out sharp corners or noisy data

idea: replace each edge by its midpoint, and connect midpoints of neighboring edges

Questions:

1. If you apply the midpoint transformation repeatedly, what shape results?
2. Is it possible that the midpoint transformation of a polygon produces something that's not a polygon?
