Open Sets in \mathbb{R} MATH 348

For today, all of the sets we consider will be sets of real numbers.

• /	
1. Give an example of a set of real numbers	
(a)that is neither open nor closed.	
(b)that is both open and closed.	

- 2. Give a proof or counterexample for each statement.
 - (a) The union of any collection of open sets is itself an open set.
 - (b) The intersection of any collection of open sets is itself an open set.
 - (c) The intersection of any finite collection of open sets is itself an open set.

3. If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is open, is f(A) necessarily open?

4. If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is open, is $f^{-1}(A)$ necessarily open?

5.	Can you formulate a statement about continuity in terms of <i>closed</i> sets? That is, complete the following statement.
	A function $f:\mathbb{R} \to \mathbb{R}$ is continuous if and only if
6.	Let A and B be open sets and $X = A \cup B$. Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be continuous functions that agree on $A \cap B$. Define the function $h : A \cup B \to \mathbb{R}$ by $h = f$ on A and $h = g$ on B . Is h continuous on X ? Why or why not?
7.	How would your answer to #6 change if A and B are $closed$ sets?

8. How would your answer to #6 change if A and B are arbitrary sets?