Topological Spaces

MATH 348

- **1.** Find all possible topologies on $X = \{a, b\}$.
- **2.** Find all topologies on $X = \{a, b, c\}$ that contain $\{a\}$ and $\{b\}$ as open sets.
- **3.** Give an example of a topology on \mathbb{R} with...
 - (a) ...exactly three open sets.
 - (b) ...exactly five open sets.
- 4. Is it possible for a topological space to have exactly one open set?
- **5.** Let $X = \mathbb{R}$. Which of the following collections of sets form topologies on X?
 - (a) $\mathcal{T}_1 = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$
 - (b) $\mathcal{T}_2 = \{[a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$
 - (c) $\mathcal{T}_3 = \{S \subset \mathbb{R} \mid 0 \in S\} \cup \{\emptyset\}$
 - (d) $\mathcal{T}_4 = \{ S \subset \mathbb{R} \mid S \text{ contains either } 0 \text{ or } 1 \} \cup \{\emptyset\}$
 - (e) $\mathcal{T}_5 = \{(a,b) \mid a,b \in \mathbb{R}\}$
- **6.** Consider the space $X = \{a, b, c\}$ with topology $\mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Which of the following functions are continuous in this topology?
 - (a) $f: X \to X$ defined by f(a) = b, f(b) = c, and f(c) = a
 - (b) $g: X \to X$ defined by g(a) = b, g(b) = a, and g(c) = c

7. State another continuous function $h: X \to X$ for the topological space in problem #6.

- 8. Consider the topology \mathcal{T}_1 in problem #5. Which of the following functions are continuous?
 - (a) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x
 - (b) $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = -x

9. Give several examples of continuous functions on the topological space \mathcal{T}_3 in problem #5.

- **10.** Let X be a topological space, and let $Y \subset X$ have the subspace topology.
 - (a) If A is open in Y, and Y is open in X, show that A is open in X.
 - (b) If A is closed in Y, and Y is closed in X, show that A is closed in X.

- 11. Consider the following subsets of \mathbb{R} with the subspace topology.
 - (a) Let $K = \{\frac{1}{n} \in \mathbb{R} \mid n \in \mathbb{Z}_+\}$. Show that the subspace topology on K is the discrete topology.
 - (b) Let $K^* = K \cup \{0\}$. Show that the subspace topology on K is not the discrete topology.