Bases ## **MATH 348** - **1.** Let $\mathcal{B} = \{(a,b) \cup (c,d) \subset \mathbb{R} \mid a < b < c < d \text{ are distinct irrational numbers}\}$. Is \mathcal{B} a basis for the standard topology on \mathbb{R} ? - **2.** Let $\mathcal{B} = \{(n, n+1) \mid n \in \mathbb{Z}\}$. Is \mathcal{B} a basis for some topology on \mathbb{R} ? - **3.** The collection $\mathcal{B} = \{\{x\} \mid x \in \mathbb{R}\}$ is a basis for what topology on \mathbb{R} ? - **4.** Let $\mathcal{B} = \{[a,b) \subset \mathbb{R} \mid a < b\}$. Is this a basis for a topology on \mathbb{R} ? Is this topology the standard topology? - 5. Give three examples of bases for the standard topology on \mathbb{R}^2 - **6.** For each $n \in \mathbb{Z}$ define the set $$B(n) = \begin{cases} \{n\} & \text{if } n \text{ is odd,} \\ \{n-1, n, n+1\} & \text{if } n \text{ is even.} \end{cases}$$ Is $\mathcal{B} = \{B(n) \mid n \in \mathbb{Z}\}$ the basis for a topology on \mathbb{Z} ? Give an example of a continuous function $f: \mathbb{Z} \to \mathbb{Z}$ in this topology. Then give an example of a discontinuous function. ## Connectivity MATH 348 | 1. | Which of the following topological spaces are connected? | |----|--| | | (a) \mathbb{R} with the standard topology | | | (b) \mathbb{R} with the discrete topology | | | (c) $\mathbb{R} - \{\pi\}$ with the subspace topology | | | (d) S^0 with the subspace topology | | 2. | Let X be a connected topological space. Show that there is no continuous surjective map from X to $S^0.$ | | | | | 3. | Let X be a disconnected topological space. Is there a continuous surjective map from X to S^0 ? |