Connectivity

MATH 348

1. Let
$$C = \{(-n, n) \mid n \in \mathbb{Z}\}.$$

- (a) Does \mathcal{C} cover \mathbb{R} ?
- (b) Does any finite subcollection of C cover \mathbb{R} ?
- (c) Does any finite subcollection of C cover [0, 10]?

2. Let
$$C = \{(n, \infty) \mid n \in \mathbb{Z}\} \cup \{(-\infty, n) \mid n \in \mathbb{Z}\}.$$

- (a) Does \mathcal{C} cover \mathbb{R} ?
- (b) Does any finite subcollection of C cover \mathbb{R} ?
- (c) Does any finite subcollection of C cover [0, 10]?

3. Let
$$C = \{(x, x + 2^{-n}) \mid x \in \mathbb{R}, n \in \mathbb{Z}_+\}.$$

- (a) Does \mathcal{C} cover \mathbb{R} ?
- (b) Does any finite subcollection of \mathcal{C} cover \mathbb{R} ?
- (c) Does any finite subcollection of C cover [0, 10]?

4. Prove that any finite topological space is compact.

5. Let
$$A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_+\}$$
. Is A compact in \mathbb{R} ?

6. Is $(0,1]$ compact as a subspace of \mathbb{R} ?
7. Is $[0,1]$ compact as a subspace of \mathbb{R} ?
Important theorems: • If T is a compact topological space and $f:T\to\mathbb{R}$ is a continuous function, then f is bounded.
• If $f: S \to T$ is a continuous map and S is compact, then the image of f is compact.
• A subspace T of \mathbb{R}^n is compact if and only if T is closed (as a subset of \mathbb{R}^n) and bounded.
Challenge Problem: Let the set of rationals \mathbb{Q} have the subspace topology from \mathbb{R} . Find a set $S \subset \mathbb{Q}$ that is closed and bounded but not compact.