Connectivity **MATH 348** 1. Let $$C = \{(-n, n) \mid n \in \mathbb{Z}\}.$$ - (a) Does \mathcal{C} cover \mathbb{R} ? - (b) Does any finite subcollection of C cover \mathbb{R} ? - (c) Does any finite subcollection of C cover [0, 10]? **2.** Let $$C = \{(n, \infty) \mid n \in \mathbb{Z}\} \cup \{(-\infty, n) \mid n \in \mathbb{Z}\}.$$ - (a) Does \mathcal{C} cover \mathbb{R} ? - (b) Does any finite subcollection of C cover \mathbb{R} ? - (c) Does any finite subcollection of C cover [0, 10]? **3.** Let $$C = \{(x, x + 2^{-n}) \mid x \in \mathbb{R}, n \in \mathbb{Z}_+\}.$$ - (a) Does \mathcal{C} cover \mathbb{R} ? - (b) Does any finite subcollection of \mathcal{C} cover \mathbb{R} ? - (c) Does any finite subcollection of C cover [0, 10]? **4.** Prove that any finite topological space is compact. **5.** Let $$A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_+\}$$. Is A compact in \mathbb{R} ? | 6. Is $(0,1]$ compact as a subspace of \mathbb{R} ? | |--| | | | | | 7. Is $[0,1]$ compact as a subspace of \mathbb{R} ? | | | | | | Important theorems:
• If T is a compact topological space and $f:T\to\mathbb{R}$ is a continuous function, then f is bounded. | | • If $f: S \to T$ is a continuous map and S is compact, then the image of f is compact. | | • A subspace T of \mathbb{R}^n is compact if and only if T is closed (as a subset of \mathbb{R}^n) and bounded. | | | | Challenge Problem: Let the set of rationals \mathbb{Q} have the subspace topology from \mathbb{R} . Find a set $S \subset \mathbb{Q}$ that is closed and bounded but not compact. |