Quotient Spaces

MATH 348

1. Describe each quotient space given by X/A or X/\sim .

(a)
$$X = [0, 1]$$
 and $A = \partial X = \{0, 1\}$

(b)
$$X = [0, 1] \times [0, 1] \text{ and } A = \partial X$$

(c)
$$X = [0, 1]^n$$
 and $A = \partial X$

(d) $X = \{a, b, c, d, e\}$ with the topology $\{\varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, X\}$. Define an equivalence relation on X by $a \sim b$ and $c \sim d \sim e$.

(e)
$$X = [0, 1]$$
 with $x \sim x'$ if $x - x' \in \mathbb{Z}$

(f)
$$X = [0,1]^2$$
 with $(x,y) \sim (x',y')$ if $x - x' \in \mathbb{Z}$ and $y - y' \in \mathbb{Z}$

(g)
$$X = [0,1]^3$$
 with $(x,y,z) \sim (x',y',z')$ if $x-x' \in \mathbb{Z}, y-y' \in \mathbb{Z}$, and $z-z' \in \mathbb{Z}$

(h) $X = [0,1]^2$ with each side identified with the opposite side with directions reversed

- **2.** Suppose X is a topological space with equivalence relation \sim . Let Q be the quotient space X/\sim , and let $\pi:X\to Q$ be the projection (quotient) map.
 - (a) If S is any other topological space and $f:Q\to S$ is continuous, then there exists a map $g:X\to S$ such that the following diagram commutes.

(b) If $g: X \to S$ is any continuous function such that g(x) = g(y) whenever $x \sim y$, then there is a continuous function $f: Q \to S$ such that the following diagram commutes.