Homotopy MATH 348

1.	Suppose T is convex and S is any topological space. Why are every two maps $f,g:S\to T$ homotopic?
2.	Give an example of spaces S and T with non-homotopic functions $f,g:S\to T.$
3.	Justify each of the following to show that homotopy is an equivalence relation on functions between two given topological spaces:
	(a) Homotopy is reflexive.
	(b) Homotopy is symmetric.
	(c) Homotopy is transitive.
	(-)

- 4. Explain which of the following pairs of spaces are homotopy equivalent.
 - (a) The single point space $\{0\}$ and \mathbb{R}

(b) The closed interval [0,1] and the single point space $\{0\}$

(c) The open interval (0,1) and the single point space $\{0\}$

(d) The annulus $A=\{(x,y)\in\mathbb{R}\mid 1\leq \sqrt{x^2+y^2}\leq 2\}$ and the circle S^1

(e) The punctured plane $\mathbb{R}^2 - \{(0,0)\}$ and the circle S^1

(f) S^1 and S^0